的士數:修订间差异
外观
删除的内容 添加的内容
小 修改分類 |
补救1个来源,并将0个来源标记为失效。) #IABot (v2.0.9.5 |
||
(未显示29个用户的40个中间版本) | |||
第1行: | 第1行: | ||
{{noteTA |
|||
第''n''個'''的士數'''(Taxicab number),一般寫作Ta(''n'')或Taxicab(''n''),定義為最小的數能以[[n]]個不同的方法表示成兩個[[負數|正]][[立方數]]。1954年,[[高德菲·哈羅德·哈代]]與[[愛德華·梅特蘭·萊特]]證明對於所有正[[整數]]''n''這樣的數也存在。可是他們的證明對找尋的士數毫無幫助,截止現時,只找到5個的士數([[OEIS:A011541]]): |
|||
|T=zh-hans:的士数;zh-hk:的士數;zh-tw:計程車數; |
|||
{| border="1" |
|||
|1=zh-hans:的士;zh-hk:的士;zh-tw:計程車; |
|||
!''n'' |
|||
}} |
|||
!Ta(''n'') |
|||
{{Not|士的數}} |
|||
! a^3+b^3 |
|||
第<math>n</math>個'''的士數'''({{lang|en|Taxicab number}}),一般寫作<math>\operatorname{Ta}(n)</math>或<math>\operatorname{Taxicab}(n)</math>,定義為最小的數能以<math>n</math>個不同的方法表示成兩個[[負數|正]][[立方數]]之和。1938年,[[G·H·哈代]]與[[愛德華·梅特蘭·賴特]]證明對於所有[[正整數]]<math>n</math>這樣的數也存在。可是他們的證明對找尋的士數毫無幫助,截止現時,只找到6個的士數({{oeis|A011541}}): |
|||
!發現日期 |
|||
!發現者 |
|||
|- |
|||
|1 |
|||
|2 |
|||
|1,1 |
|||
| |
|||
| |
|||
|- |
|||
|2 |
|||
|[[1729]] |
|||
|1,12<br>9,10 |
|||
|[[1657年]] |
|||
|Bernard Frenicle de Bessy |
|||
|- |
|||
|3 |
|||
|87539319 |
|||
|167,436<br>228,423<br>255,414 |
|||
|[[1957年]] |
|||
|John Leech |
|||
|- |
|||
|4 |
|||
|6963472309248 |
|||
|2421,19083<br>5436,18948<br>10200,18072<br>13322,16630 |
|||
|[[1991年]] |
|||
|E. Rosenstiel, J. A. Dardis, C. R. Rosenstiel |
|||
|- |
|||
|5 |
|||
|48988659276962496 |
|||
|38787,365757<br>107839,362753<br>205292,342952<br>221424,336588<br>231518,331954 |
|||
|[[1997年]][[11月]] |
|||
|David W. Wilson |
|||
|} |
|||
:<math> |
|||
Ta(2)因為哈代和[[拉馬努金]]的故事而為人所知: |
|||
\begin{align} |
|||
\operatorname{Ta}(1) = 2 & = 1^3 + 1^3 |
|||
\end{align} |
|||
</math> |
|||
:<math> |
|||
: 我(哈代)記得有次去見他(拉馬努金)時,他在Putney病得要命。我乘一輛編號1729的的士去,並記下(7·13·19)這個看來沒趣的數,希望它不是甚麼不祥之兆。「不,」他說,「這是個很有趣的數;它是最小能用兩種不同方法表示成兩個(正)立方數的數。 |
|||
\begin{align} |
|||
\operatorname{Ta}(2) = 1729 & = 1^3 + 12^3 \\ |
|||
& = 9^3 + 10^3 |
|||
\end{align} |
|||
</math> |
|||
:<math> |
|||
在Ta(2)之後,所有的的士數均有用[[電腦]]來找尋。 |
|||
\begin{align} |
|||
\operatorname{Ta}(3) = 87539319 & = 167^3 + 436^3 \\ |
|||
& = 228^3 + 423^3 \\ |
|||
& = 255^3 + 414^3 |
|||
\end{align}</math> |
|||
:<math> |
|||
==Ta(6)的找尋== |
|||
\begin{align} |
|||
*David W. Wilson證明了Ta(6) ≤ 8230545258248091551205888。 |
|||
\operatorname{Ta}(4) = 6963472309248 & = 2421^3 + 19083^3 \\ |
|||
*[[1998年]][[丹尼爾·朱利阿斯·伯恩斯坦]]證實391909274215699968 ≥ Ta(6) ≥ 10<sup>18</sup> |
|||
& = 5436^3 + 18948^3 \\ |
|||
*[[2002年]]Randall L. Rathbun證明Ta(6) ≤ 24153319581254312065344 |
|||
& = 10200^3 + 18072^3 \\ |
|||
*[[2003年]]5月,Stuart Gascoigne確定Ta(6)<math>>6.8\times10^{19}</math>,且Cristian S. Calude、Elena Calude及Michael J. Dinneen顯示Ta(6)=24153319581254312065344的機會大於99%。 |
|||
& = 13322^3 + 16630^3 |
|||
\end{align} |
|||
</math> |
|||
:<math> |
|||
==參看== |
|||
\begin{align} |
|||
* [[一般化的士數]]:多個多次冪之和 |
|||
\operatorname{Ta}(5) = 48988659276962496 & = 38787^3 + 365757^3 \\ |
|||
* [[士的數]]:兩個不論正負的立方數之和 |
|||
& = 107839^3 + 362753^3 \\ |
|||
& = 205292^3 + 342952^3 \\ |
|||
& = 221424^3 + 336588^3 \\ |
|||
& = 231518^3 + 331954^3 |
|||
\end{align} |
|||
</math> |
|||
:<math> |
|||
== 參考 == |
|||
\begin{align} |
|||
* G. H. Hardy 和 E. M. Wright, ''An Introduction to the Theory of Numbers'', 3rd ed., Oxford University Press, London & NY, 1954, Thm. 412. |
|||
\operatorname{Ta}(6) = 24153319581254312065344 & = 582162^3 + 28906206^3 \\ |
|||
& = 3064173^3 + 28894803^3 \\ |
|||
& = 8519281^3 + 28657487^3 \\ |
|||
& = 16218068^3 + 27093208^3 \\ |
|||
& = 17492496^3 + 26590452^3 \\ |
|||
& = 18289922^3 + 26224366^3 |
|||
\end{align} |
|||
</math> |
|||
<math>\operatorname{Ta}(2)</math>因為哈代和[[拉馬努金]]的故事而為人所知: |
|||
{{cquote|拉馬努金病重,哈代前往探望。哈代說:「我乘計程車來,車牌號碼是<math>1729</math>,這數真沒趣,希望不是不祥之兆。」拉馬努金答道:「不,那是個有趣得很的數。可以用兩個立方之和來表達而且有兩種表達方式的數之中,[[1729|<math>\color{blue}{1729}</math>]]是最小的。」(即<math>1729 = 1^3 + 12^3 = 9^3 + 10^3</math>,後來這類數稱為[[的士數]]。)利特爾伍德回應這宗軼聞說:「每個整數都是拉馬努金的朋友。」}} |
|||
在<math>\operatorname{Ta}(2)</math>之後,所有的的士數均用[[電腦]]來尋找。 |
|||
== Ta(6)的找尋 == |
|||
* {{lang|en|David W. Wilson}}證明了<math>\operatorname{Ta}(6) \le 8230545258248091551205888</math>。 |
|||
* 1998年{{tsl|en|Daniel J. Bernstein|丹尼爾·朱利阿斯·伯恩斯坦}}證實<math>391909274215699968 \ge \operatorname{Ta}(6) \ge 10^{18}</math> |
|||
* 2002年{{lang|en|Randall L. Rathbun}}證明<math>\operatorname{Ta}(6) \le 24153319581254312065344</math> |
|||
* 2003年5月,{{lang|en|Stuart Gascoigne}}確定<math>\operatorname{Ta}(6) > 6.8 \times 10^{19}</math>,且{{lang|en|Cristian S. Calude}}、{{lang|en|Elena Calude}}及{{lang|en|Michael J. Dinneen}}顯示<math>\operatorname{Ta}(6) = 24153319581254312065344</math>的機會大於99%。 |
|||
==參考文獻== |
|||
{{refbegin|2}} |
|||
* G. H. Hardy和E. M. Wright, ''An Introduction to the Theory of Numbers'', 3rd ed., Oxford University Press, London & NY, 1954, Thm. 412. |
|||
* J. Leech, ''Some Solutions of Diophantine Equations'', Proc. Cambridge Phil. Soc. 53, 778-780, 1957. |
* J. Leech, ''Some Solutions of Diophantine Equations'', Proc. Cambridge Phil. Soc. 53, 778-780, 1957. |
||
* E. Rosenstiel, J. A. Dardis and C. R. Rosenstiel, ''The four least solutions in distinct positive integers of the Diophantine equation s = x<sup>3</sup> + y<sup>3</sup> = z<sup>3</sup> + w<sup>3</sup> = u<sup>3</sup> + v<sup>3</sup> = m<sup>3</sup> + n<sup>3</sup>'', |
* E. Rosenstiel, J. A. Dardis and C. R. Rosenstiel, ''The four least solutions in distinct positive integers of the Diophantine equation s = x<sup>3</sup> + y<sup>3</sup> = z<sup>3</sup> + w<sup>3</sup> = u<sup>3</sup> + v<sup>3</sup> = m<sup>3</sup> + n<sup>3</sup>'', Bull. Inst. Math. Appl., 27(1991) 155-157; MR 92i:11134, [http://www.cix.co.uk/%7Erosenstiel/cubes/welcome.htm online] {{Wayback|url=http://www.cix.co.uk/%7Erosenstiel/cubes/welcome.htm |date=20050302090451 }} |
||
* David W. Wilson, ''The Fifth Taxicab Number is 48988659276962496'', Journal of Integer Sequences, Vol. 2 (1999), [http://www.math.uwaterloo.ca/JIS/wilson10.html#RDR91 online] |
* David W. Wilson, ''The Fifth Taxicab Number is 48988659276962496'', Journal of Integer Sequences, Vol. 2 (1999), [http://www.math.uwaterloo.ca/JIS/wilson10.html#RDR91 online] {{Wayback|url=http://www.math.uwaterloo.ca/JIS/wilson10.html#RDR91 |date=20040422034546 }} |
||
* D. J. Bernstein, ''Enumerating solutions to p(a) + q(b) = r(c) + s(d)'', Mathematics of Computation 70, 233 (2000), |
* D. J. Bernstein, ''Enumerating solutions to p(a) + q(b) = r(c) + s(d)'', Mathematics of Computation 70, 233 (2000), 389—394. |
||
* C. S. Calude, E. Calude and M. J. Dinneen: ''What is the value of Taxicab(6)?'', Journal of Universal Computer Science, Vol. 9 (2003), p. 1196-1203 |
* C. S. Calude, E. Calude and M. J. Dinneen: ''What is the value of Taxicab(6)?'', Journal of Universal Computer Science, Vol. 9 (2003), p. 1196-1203 |
||
{{refend}} |
|||
== 參看 == |
|||
* [[一般化的士數]]:多個多次冪之和 |
|||
* [[士的數]]:兩個不論正負的立方數之和 |
|||
* [[三立方数和]] |
|||
==外部連結== |
|||
[[Category:整数数列|Taxicab]] |
|||
* [http://listserv.nodak.edu/scripts/wa.exe?A2=ind0207&L=nmbrthry&F=&S=&P=1278 A 2002 post to the Number Theory mailing list by Randall L. Rathbun] {{Wayback|url=http://listserv.nodak.edu/scripts/wa.exe?A2=ind0207&L=nmbrthry&F=&S=&P=1278 |date=20041010215634 }} |
|||
* {{cite video |editor-last=Haran |editor-first=Brady |editor-link=Brady Haran |last1=Grime |first1=James |last2=Bowley |first2=Roger |title=1729: Taxi Cab Number or Hardy-Ramanujan Number |series=Numberphile |url=http://www.numberphile.com/videos/1729taxicab.html |access-date=2020-10-25 |archive-date=2017-03-06 |archive-url=https://web.archive.org/web/20170306141337/http://numberphile.com/videos/1729taxicab.html |dead-url=yes }} |
|||
* [http://euler.free.fr/ Taxicab and other maths at Euler] {{Wayback|url=http://euler.free.fr/ |date=20131209163223 }} |
|||
* {{cite web |editor-last=Haran |editor-first=Brady |editor-link=Brady Haran |last=Singh |first=Simon |authorlink=Simon Singh |title=Taxicab Numbers in Futurama |series=Numberphile |url=http://www.numberphile.com/videos/futurama.html |access-date=2020-10-25 |archive-date=2015-12-03 |archive-url=https://web.archive.org/web/20151203175119/http://www.numberphile.com/videos/futurama.html |dead-url=yes }} |
|||
[[Category:整数数列|D]] |
|||
[[en:Taxicab number]] |
|||
[[Category:斯里尼瓦瑟·拉马努金]] |
|||
[[es:Número Taxicab]] |
|||
[[fr:Nombre taxicab]] |
2024年3月1日 (五) 05:59的最新版本
第個的士數(Taxicab number),一般寫作或,定義為最小的數能以個不同的方法表示成兩個正立方數之和。1938年,G·H·哈代與愛德華·梅特蘭·賴特證明對於所有正整數這樣的數也存在。可是他們的證明對找尋的士數毫無幫助,截止現時,只找到6個的士數( A011541):
因為哈代和拉馬努金的故事而為人所知:
“ | 拉馬努金病重,哈代前往探望。哈代說:「我乘計程車來,車牌號碼是,這數真沒趣,希望不是不祥之兆。」拉馬努金答道:「不,那是個有趣得很的數。可以用兩個立方之和來表達而且有兩種表達方式的數之中,是最小的。」(即,後來這類數稱為的士數。)利特爾伍德回應這宗軼聞說:「每個整數都是拉馬努金的朋友。」 | ” |
在之後,所有的的士數均用電腦來尋找。
Ta(6)的找尋
[编辑]- David W. Wilson證明了。
- 1998年丹尼爾·朱利阿斯·伯恩斯坦證實
- 2002年Randall L. Rathbun證明
- 2003年5月,Stuart Gascoigne確定,且Cristian S. Calude、Elena Calude及Michael J. Dinneen顯示的機會大於99%。
參考文獻
[编辑]- G. H. Hardy和E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford University Press, London & NY, 1954, Thm. 412.
- J. Leech, Some Solutions of Diophantine Equations, Proc. Cambridge Phil. Soc. 53, 778-780, 1957.
- E. Rosenstiel, J. A. Dardis and C. R. Rosenstiel, The four least solutions in distinct positive integers of the Diophantine equation s = x3 + y3 = z3 + w3 = u3 + v3 = m3 + n3, Bull. Inst. Math. Appl., 27(1991) 155-157; MR 92i:11134, online (页面存档备份,存于互联网档案馆)
- David W. Wilson, The Fifth Taxicab Number is 48988659276962496, Journal of Integer Sequences, Vol. 2 (1999), online (页面存档备份,存于互联网档案馆)
- D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d), Mathematics of Computation 70, 233 (2000), 389—394.
- C. S. Calude, E. Calude and M. J. Dinneen: What is the value of Taxicab(6)?, Journal of Universal Computer Science, Vol. 9 (2003), p. 1196-1203
參看
[编辑]外部連結
[编辑]- A 2002 post to the Number Theory mailing list by Randall L. Rathbun (页面存档备份,存于互联网档案馆)
- Grime, James; Bowley, Roger. Haran, Brady , 编. 1729: Taxi Cab Number or Hardy-Ramanujan Number. Numberphile. [2020-10-25]. (原始内容存档于2017-03-06).
- Taxicab and other maths at Euler (页面存档备份,存于互联网档案馆)
- Singh, Simon. Haran, Brady , 编. Taxicab Numbers in Futurama. Numberphile. [2020-10-25]. (原始内容存档于2015-12-03).