三角函數精確值:修订间差异
外观
删除的内容 添加的内容
Acenaphthene(留言 | 贡献) |
Xiao niu er(留言 | 贡献) 小 →三角函数精确值: 修正笔误 |
||
(未显示6个用户的21个中间版本) | |||
第1行: | 第1行: | ||
{{三角学}} |
{{三角学}} |
||
'''三角函數精確值'''是利用[[三角恆等式|三角函數的公式]]將特定的[[三角函數]]值加以化簡,並以數學[[方根|根式]]或[[分數]]表示 |
'''三角函數精確值'''是利用[[三角恆等式|三角函數的公式]]將特定的[[三角函數]]值加以化簡,並以數學[[方根|根式]]或[[分數]]表示。 |
||
用[[方根|根式]]或[[分數]]表達的精確[[三角函數]]有時很有用,主要用於簡化的解決某些[[方程式]]能進一步化簡。 |
用[[方根|根式]]或[[分數]]表達的精確[[三角函數]]有時很有用,主要用於簡化的解決某些[[方程式]]能進一步化簡。 |
||
第57行: | 第57行: | ||
===經由半角公式的計算=== |
===經由半角公式的計算=== |
||
{{see also2|[[三角恒等式# |
{{see also2|[[三角恒等式#雙倍角、三倍角和半角公式|半角公式]]}} |
||
例如:15°、22.5° |
例如:15°、22.5° |
||
:<math>\sin\left(\frac{x}{2}\right) = \pm\, \sqrt{\tfrac{1}{2}(1 - \cos x)}</math> |
:<math>\sin\left(\frac{x}{2}\right) = \pm\, \sqrt{\tfrac{1}{2}(1 - \cos x)}</math> |
||
第64行: | 第64行: | ||
===利用三倍角公式求<math>\frac13\,</math>角=== |
===利用三倍角公式求<math>\frac13\,</math>角=== |
||
{{see also2|[[三角恒等式# |
{{see also2|[[三角恒等式#雙倍角、三倍角和半角公式|三倍角公式]]}} |
||
例如:10°、20°、7°......等等,非三的倍數的角的精確值。 |
例如:10°、20°、7°......等等,非三的倍數的角的精確值。 |
||
*<math>\sin 3\theta = 3 \sin \theta- 4 \sin^3\theta \,</math> |
*<math>\sin 3\theta = 3 \sin \theta- 4 \sin^3\theta \,</math> |
||
第86行: | 第86行: | ||
:<math>\sin{1^\circ} = \frac{1}{2i}\left(\sqrt[3]{\cos{3^\circ}+i\sin{3^\circ}}-\sqrt[3]{\cos{3^\circ}-i\sin{3^\circ}}\right)</math> |
:<math>\sin{1^\circ} = \frac{1}{2i}\left(\sqrt[3]{\cos{3^\circ}+i\sin{3^\circ}}-\sqrt[3]{\cos{3^\circ}-i\sin{3^\circ}}\right)</math> |
||
::<math>= \frac{1}{4\sqrt[3]{2}i}\Bigg\{\sqrt[3]{\left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]+i\left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]}</math> |
::<math>= \frac{1}{4\sqrt[3]{2}i}\Bigg\{\sqrt[3]{\left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]+i\left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]}</math> |
||
:::<math>-\sqrt[3]{\left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]-i\left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]}\Bigg\}</math><ref>由[[Wolfram Alpha]]验算:[http://www.wolframalpha.com/input/?i=N%5BIm%5B1%2F%282*2%5E%281%2F3%29%29*%28%282%281%2BSqrt%5B3%5D%29*Sqrt%5B5%2BSqrt%5B5%5D%5D%2BSqrt%5B2%5D%28Sqrt%5B5%5D-1%29%28Sqrt%5B3%5D-1%29%29%2Bi%282%281-Sqrt%5B3%5D%29*Sqrt%5B5%2BSqrt%5B5%5D%5D%2BSqrt%5B2%5D%28Sqrt%5B5%5D-1%29%28Sqrt%5B3%5D%2B1%29%29%29%5E%281%2F3%29%5D-Sin%5BPi%2F180%5D%5D%5D]</ref> |
:::<math>-\sqrt[3]{\left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]-i\left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]}\Bigg\}</math><ref>由[[Wolfram Alpha]]验算:[http://www.wolframalpha.com/input/?i=N%5BIm%5B1%2F%282*2%5E%281%2F3%29%29*%28%282%281%2BSqrt%5B3%5D%29*Sqrt%5B5%2BSqrt%5B5%5D%5D%2BSqrt%5B2%5D%28Sqrt%5B5%5D-1%29%28Sqrt%5B3%5D-1%29%29%2Bi%282%281-Sqrt%5B3%5D%29*Sqrt%5B5%2BSqrt%5B5%5D%5D%2BSqrt%5B2%5D%28Sqrt%5B5%5D-1%29%28Sqrt%5B3%5D%2B1%29%29%29%5E%281%2F3%29%5D-Sin%5BPi%2F180%5D%5D%5D] {{Wayback|url=http://www.wolframalpha.com/input/?i=N%5BIm%5B1%2F%282*2%5E%281%2F3%29%29*%28%282%281%2BSqrt%5B3%5D%29*Sqrt%5B5%2BSqrt%5B5%5D%5D%2BSqrt%5B2%5D%28Sqrt%5B5%5D-1%29%28Sqrt%5B3%5D-1%29%29%2Bi%282%281-Sqrt%5B3%5D%29*Sqrt%5B5%2BSqrt%5B5%5D%5D%2BSqrt%5B2%5D%28Sqrt%5B5%5D-1%29%28Sqrt%5B3%5D%2B1%29%29%29%5E%281%2F3%29%5D-Sin%5BPi%2F180%5D%5D%5D |date=20160304134914 }}</ref> |
||
===經由和角公式的計算=== |
===經由和角公式的計算=== |
||
第95行: | 第95行: | ||
===經由托勒密定理的計算=== |
===經由托勒密定理的計算=== |
||
{{see|托勒密定理|弦 |
{{see|托勒密定理|弦函數}} |
||
[[File:Ptolemy Pentagon.svg|thumb|Chord(36°) = a/b = 1/φ, 根据[[托勒密定理]]]] |
[[File:Ptolemy Pentagon.svg|thumb|Chord(36°) = a/b = 1/φ, 根据[[托勒密定理]]]] |
||
例如:18° |
例如:18° |
||
第106行: | 第106行: | ||
:<math>\sin{18^\circ}=\frac{\sqrt5-1}{4}</math> |
:<math>\sin{18^\circ}=\frac{\sqrt5-1}{4}</math> |
||
== 三角函 |
== 三角函数精确值列表 == |
||
由 |
由于三角函数的特性,大于45°角度的三角函数值,可以经由自0°~45°的角度的三角函数值的相关的计算取得。 |
||
=== 0°:根本=== |
=== 0°:根本=== |
||
第113行: | 第113行: | ||
: <math>\cos 0=1\,</math> |
: <math>\cos 0=1\,</math> |
||
: <math>\tan 0=0\,</math> |
: <math>\tan 0=0\,</math> |
||
⚫ | |||
⚫ | |||
⚫ | ::::<math>\frac{1-\sqrt{3}i}{16}\sqrt[3]{4\sqrt{30}-8\sqrt{15+3\sqrt{5}}+8\sqrt{5+\sqrt{5}}+4\sqrt{10}-4\sqrt{6}-4\sqrt{2}-\left(4\sqrt{30}+8\sqrt{15+3\sqrt{5}}+8\sqrt{5+\sqrt{5}}-4\sqrt{10}-4\sqrt{6}+4\sqrt{2}\right)i}</math><ref>使用Mathematica驗算,代碼為N[ArcSin[(1 + Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] + (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1] + (1 - Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] - (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1]], 100]/Degree結果為1與原角度無誤差</ref> |
||
=== 1.5°:正一百二十边形=== |
=== 1.5°:正一百二十边形=== |
||
第121行: | 第125行: | ||
:<math>\sin\left(\frac{\pi}{96}\right) = \sin\left(1.875^\circ\right) = \frac12\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}</math> |
:<math>\sin\left(\frac{\pi}{96}\right) = \sin\left(1.875^\circ\right) = \frac12\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}</math> |
||
:<math>\cos\left(\frac{\pi}{96}\right) = \cos\left(1.875^\circ\right) = \frac12\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}</math> |
:<math>\cos\left(\frac{\pi}{96}\right) = \cos\left(1.875^\circ\right) = \frac12\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}</math> |
||
:<math>\tan\left(\frac{\pi}{96}\right) = \tan\left(1.875^\circ\right) = \frac{\sqrt{2-\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}}}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2}+2}}</math> |
|||
⚫ | |||
⚫ | |||
⚫ | ::::<math>\frac{1-\sqrt{3}i}{16}\sqrt[3]{4\sqrt{30}-8\sqrt{15+3\sqrt{5}}+8\sqrt{5+\sqrt{5}}+4\sqrt{10}-4\sqrt{6}-4\sqrt{2}-\left(4\sqrt{30}+8\sqrt{15+3\sqrt{5}}+8\sqrt{5+\sqrt{5}}-4\sqrt{10}-4\sqrt{6}+4\sqrt{2}\right)i}</math><ref>使用Mathematica驗算,代碼為N[ArcSin[(1 + Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] + (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1] + (1 - Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] - (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1]], 100]/Degree結果為1與原角度無誤差</ref> |
||
=== 2°:6°的三分之一=== |
=== 2°:6°的三分之一=== |
||
第135行: | 第136行: | ||
=== 2.25°:正八十边形 === |
=== 2.25°:正八十边形 === |
||
:<math>\sin\left(\frac{\pi}{80}\right) = \sin\left(2.25^\circ\right) =\frac{ |
:<math>\sin\left(\frac{\pi}{80}\right) = \sin\left(2.25^\circ\right) =\frac{\sqrt{-2\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+8}}{4}</math> |
||
:<math>\cos\left(\frac{\pi}{80}\right) = \cos\left(2.25^\circ\right) =\frac{ |
:<math>\cos\left(\frac{\pi}{80}\right) = \cos\left(2.25^\circ\right) =\frac{\sqrt{2\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+8}}{4}</math> |
||
:<math>\tan\left(\frac{\pi}{80}\right) = \tan\left(2.25^\circ\right) =\frac{\sqrt{-\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+4}}{\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+4}}</math> |
|||
:<math>\cot\left(\frac{\pi}{80}\right) = \cot\left(2.25^\circ\right) =\frac{\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+4}}{\sqrt{-\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+4}}</math> |
|||
:<math>\sec\left(\frac{\pi}{80}\right) = \sec\left(2.25^\circ\right) =\frac{2\sqrt{2}}{\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+4}}</math> |
|||
:<math>\csc\left(\frac{\pi}{80}\right) = \csc\left(2.25^\circ\right) =\frac{2\sqrt{2}}{\sqrt{-\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{2}\sqrt{\sqrt{5}+5}+4}+4}+4}}</math> |
|||
=== 2.8125°:正六十四边形 === |
=== 2.8125°:正六十四边形 === |
||
第142行: | 第147行: | ||
:<math>\cos\left(\frac{\pi}{64}\right) = \cos\left(2.8125^\circ\right) = \frac12\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}</math> |
:<math>\cos\left(\frac{\pi}{64}\right) = \cos\left(2.8125^\circ\right) = \frac12\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}</math> |
||
=== 3°:正六十 |
=== 3°:正六十边形 === |
||
: <math>\sin\frac{\pi}{60}=\sin 3^\circ=\tfrac{1}{4} \sqrt{8-\sqrt3-\sqrt{15}-\sqrt{10-2\sqrt5}}\,</math> |
: <math>\sin\frac{\pi}{60}=\sin 3^\circ=\tfrac{1}{4} \sqrt{8-\sqrt3-\sqrt{15}-\sqrt{10-2\sqrt5}}\,</math> |
||
: <math>\cos\frac{\pi}{60}=\cos 3^\circ=\tfrac{1}{4} \sqrt{8+\sqrt3+\sqrt{15}+\sqrt{10-2\sqrt5}}\,</math> |
: <math>\cos\frac{\pi}{60}=\cos 3^\circ=\tfrac{1}{4} \sqrt{8+\sqrt3+\sqrt{15}+\sqrt{10-2\sqrt5}}\,</math> |
||
: <math>\tan\frac{\pi}{60}=\tan 3^\circ=\tfrac{1}{4} \left[(2-\sqrt3)(3+\sqrt5)-2\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math> |
: <math>\tan\frac{\pi}{60}=\tan 3^\circ=\tfrac{1}{4} \left[(2-\sqrt3)(3+\sqrt5)-2\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math> |
||
=== 3.75°:正四十八边形 === |
|||
:<math>\sin\left(\frac{\pi}{48}\right) = \sin\left(3.75^\circ\right) = \frac12\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}</math> |
|||
:<math>\cos\left(\frac{\pi}{48}\right) = \cos\left(3.75^\circ\right) = \frac12\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}</math> |
|||
=== 4°:12°的三分之一 === |
=== 4°:12°的三分之一 === |
||
第159行: | 第168行: | ||
:<math>\cos\left(\frac{\pi}{40}\right) = \cos\left(4.5^\circ\right) =\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}}</math> |
:<math>\cos\left(\frac{\pi}{40}\right) = \cos\left(4.5^\circ\right) =\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}}</math> |
||
=== 5°:15°的三分之一、正三十六 |
=== 5°:15°的三分之一、正三十六边形 === |
||
: <math>\sin\frac{\pi}{36}=\sin 5^\circ = \frac{2 - 2\sqrt{3}\mathrm{i}}{2 \sqrt[3]{2(\sqrt{2} - \sqrt{6})} - 2-\sqrt{3}} - \frac{(1 + \sqrt{3}\mathrm{i}) \sqrt[3]{2(\sqrt{2} - \sqrt{6})} -2-\sqrt{3}}{8}\,</math> |
: <math>\sin\frac{\pi}{36}=\sin 5^\circ = \frac{2 - 2\sqrt{3}\mathrm{i}}{2 \sqrt[3]{2(\sqrt{2} - \sqrt{6})} - 2-\sqrt{3}} - \frac{(1 + \sqrt{3}\mathrm{i}) \sqrt[3]{2(\sqrt{2} - \sqrt{6})} -2-\sqrt{3}}{8}\,</math> |
||
第174行: | 第183行: | ||
: <math>\csc\frac{\pi}{30}=\csc 6^\circ=2+\sqrt5+\sqrt{15+6\sqrt5}\,</math> |
: <math>\csc\frac{\pi}{30}=\csc 6^\circ=2+\sqrt5+\sqrt{15+6\sqrt5}\,</math> |
||
=== 7.5°:正二十四 |
=== 7.5°:正二十四边形 === |
||
: <math>\sin\frac{\pi}{24}=\sin 7.5^\circ=\tfrac{1}{4} \sqrt{8-2\sqrt6-2\sqrt2}\,</math> |
: <math>\sin\frac{\pi}{24}=\sin 7.5^\circ=\tfrac{1}{4} \sqrt{8-2\sqrt6-2\sqrt2}\,</math> |
||
: <math>\cos\frac{\pi}{24}=\cos 7.5^\circ=\tfrac{1}{4} \sqrt{8+2\sqrt6+2\sqrt2}\,</math> |
: <math>\cos\frac{\pi}{24}=\cos 7.5^\circ=\tfrac{1}{4} \sqrt{8+2\sqrt6+2\sqrt2}\,</math> |
||
第182行: | 第191行: | ||
: <math>\csc\frac{\pi}{24}=\csc 7.5^\circ=\sqrt{16+6\sqrt6+10\sqrt2+8\sqrt3}\,</math> |
: <math>\csc\frac{\pi}{24}=\csc 7.5^\circ=\sqrt{16+6\sqrt6+10\sqrt2+8\sqrt3}\,</math> |
||
=== 9°:正二十 |
=== 9°:正二十边形=== |
||
{{see|二十 |
{{see|二十边形}} |
||
: <math>\sin\frac{\pi}{20}=\sin 9^\circ=\tfrac{1}{4} \sqrt{8-2\sqrt{10+2\sqrt5}}\,</math> |
: <math>\sin\frac{\pi}{20}=\sin 9^\circ=\tfrac{1}{4} \sqrt{8-2\sqrt{10+2\sqrt5}}\,</math> |
||
: <math>\cos\frac{\pi}{20}=\cos 9^\circ=\tfrac{1}{4} \sqrt{8+2\sqrt{10+2\sqrt5}}\,</math> |
: <math>\cos\frac{\pi}{20}=\cos 9^\circ=\tfrac{1}{4} \sqrt{8+2\sqrt{10+2\sqrt5}}\,</math> |
||
第190行: | 第199行: | ||
: <math>\cot\frac{\pi}{20}=\cot9^\circ=\sqrt5+1+\sqrt{5+2\sqrt5}\,</math> |
: <math>\cot\frac{\pi}{20}=\cot9^\circ=\sqrt5+1+\sqrt{5+2\sqrt5}\,</math> |
||
=== 10°:正十八 |
=== 10°:正十八边形 === |
||
{{see|十八 |
{{see|十八边形}} |
||
:<math>{\tan10^\circ=-\frac{-1-\sqrt{3}{\rm{i}}}{6}\sqrt[3]{-12\sqrt3 + 36{\rm{i}}}-\frac{-1+\sqrt{3}{\rm{i}}}{6}\sqrt[3]{-12\sqrt3 - 36{\rm{i}}} + \frac{1}{\sqrt3}}\,</math> |
:<math>{\tan10^\circ=-\frac{-1-\sqrt{3}{\rm{i}}}{6}\sqrt[3]{-12\sqrt3 + 36{\rm{i}}}-\frac{-1+\sqrt{3}{\rm{i}}}{6}\sqrt[3]{-12\sqrt3 - 36{\rm{i}}} + \frac{1}{\sqrt3}}\,</math> |
||
第201行: | 第210行: | ||
:<math>\cot\frac{\pi}{16}=\cot 11.25^\circ=\sqrt{4+2\sqrt{2}}+\sqrt{2}+1</math> |
:<math>\cot\frac{\pi}{16}=\cot 11.25^\circ=\sqrt{4+2\sqrt{2}}+\sqrt{2}+1</math> |
||
=== 12°:正十五 |
=== 12°:正十五边形 === |
||
{{see|十五 |
{{see|十五边形}} |
||
: <math>\sin\frac{\pi}{15}=\sin 12^\circ=\tfrac{1}{8} \left[\sqrt{2(5+\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math> |
: <math>\sin\frac{\pi}{15}=\sin 12^\circ=\tfrac{1}{8} \left[\sqrt{2(5+\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math> |
||
: <math>\cos\frac{\pi}{15}=\cos 12^\circ=\tfrac{1}{8} \left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]\,</math> |
: <math>\cos\frac{\pi}{15}=\cos 12^\circ=\tfrac{1}{8} \left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]\,</math> |
||
: <math>\tan\frac{\pi}{15}=\tan 12^\circ=\tfrac{1}{2} \left[\sqrt3(3-\sqrt5)-\sqrt{2(25-11\sqrt5)}\right]\,</math> |
: <math>\tan\frac{\pi}{15}=\tan 12^\circ=\tfrac{1}{2} \left[\sqrt3(3-\sqrt5)-\sqrt{2(25-11\sqrt5)}\right]\,</math> |
||
=== 15°:正十二 |
=== 15°:正十二边形 === |
||
{{see|十二 |
{{see|十二边形}} |
||
: <math>\sin\frac{\pi}{12}=\sin 15^\circ=\ |
: <math>\sin\frac{\pi}{12}=\sin 15^\circ=\frac{1}{4}\sqrt2\left(\sqrt3-1\right)\,</math> |
||
: <math>\cos\frac{\pi}{12}=\cos 15^\circ=\ |
: <math>\cos\frac{\pi}{12}=\cos 15^\circ=\frac{1}{4}\sqrt2\left(\sqrt3+1\right)\,</math> |
||
: <math>\tan\frac{\pi}{12}=\tan 15^\circ=2-\sqrt3\,</math> |
: <math>\tan\frac{\pi}{12}=\tan 15^\circ=2-\sqrt3\,</math> |
||
: <math>\cot\frac{\pi}{12}=\cot 15^\circ=2+\sqrt3\,</math> |
|||
=== 18°:正十 |
=== 18°:正十边形 === |
||
{{see|十 |
{{see|十边形}} |
||
: <math>\sin\frac{\pi}{10}=\sin 18^\circ=\tfrac{1}{4}\left(\sqrt5-1\right)=\tfrac{1}{2}\varphi^{-1}\,</math> |
: <math>\sin\frac{\pi}{10}=\sin 18^\circ=\tfrac{1}{4}\left(\sqrt5-1\right)=\tfrac{1}{2}\varphi^{-1}\,</math> |
||
: <math>\cos\frac{\pi}{10}=\cos 18^\circ=\tfrac{1}{4}\sqrt{2\left(5+\sqrt5\right)}\,</math> |
: <math>\cos\frac{\pi}{10}=\cos 18^\circ=\tfrac{1}{4}\sqrt{2\left(5+\sqrt5\right)}\,</math> |
||
: <math>\tan\frac{\pi}{10}=\tan 18^\circ=\tfrac{1}{5}\sqrt{5\left(5-2\sqrt5\right)}\,</math> |
: <math>\tan\frac{\pi}{10}=\tan 18^\circ=\tfrac{1}{5}\sqrt{5\left(5-2\sqrt5\right)}\,</math> |
||
=== 20°:正九 |
=== 20°:正九边形、60°的三分之一 === |
||
{{see|九 |
{{see|九边形}} |
||
: <math>\sin\frac{\pi}{9}=\sin 20^\circ=\sqrt[3]{-\frac{\sqrt{3}}{16}+\sqrt{-\frac{1}{256}}}+\sqrt[3]{-\frac{\sqrt{3}}{16}-\sqrt{-\frac{1}{256}}}=</math> |
: <math>\sin\frac{\pi}{9}=\sin 20^\circ=\sqrt[3]{-\frac{\sqrt{3}}{16}+\sqrt{-\frac{1}{256}}}+\sqrt[3]{-\frac{\sqrt{3}}{16}-\sqrt{-\frac{1}{256}}}=</math> |
||
:: <math>2^{-\frac{4}{3}}\left(\sqrt[3]{i-\sqrt{3}}-\sqrt[3]{i+\sqrt{3}}\right)</math> |
:: <math>2^{-\frac{4}{3}}\left(\sqrt[3]{i-\sqrt{3}}-\sqrt[3]{i+\sqrt{3}}\right)</math> |
||
第235行: | 第245行: | ||
: <math>\tan\frac{7\pi}{60}=\tan 21^\circ=\tfrac{1}{4}\left[2-\left(2+\sqrt3\right)\left(3-\sqrt5\right)\right]\left[2-\sqrt{2\left(5+\sqrt5\right)}\right]\,</math> |
: <math>\tan\frac{7\pi}{60}=\tan 21^\circ=\tfrac{1}{4}\left[2-\left(2+\sqrt3\right)\left(3-\sqrt5\right)\right]\left[2-\sqrt{2\left(5+\sqrt5\right)}\right]\,</math> |
||
=== 360/17°,<math>\mathbf{\left(21\frac{3}{17}\right)^{\circ}}</math>,<math>\mathbf{\left(\frac{360}{17}\right)^{\circ}}</math>:正十七 |
=== 360/17°,<math>\mathbf{\left(21\frac{3}{17}\right)^{\circ}}</math>,<math>\mathbf{\left(\frac{360}{17}\right)^{\circ}}</math>:正十七边形=== |
||
{{see|十七 |
{{see|十七边形}} |
||
:<math>\operatorname{cos}{2\pi\over17}=\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}}{16}</math> |
:<math>\operatorname{cos}{2\pi\over17}=\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}}{16}</math> |
||
=== 22.5°:正八 |
=== 22.5°:正八边形 === |
||
{{see|八 |
{{see|八边形}} |
||
: <math>\sin\frac{\pi}{8}=\sin 22.5^\circ=\tfrac{1}{2}(\sqrt{2-\sqrt{2}})</math> |
: <math>\sin\frac{\pi}{8}=\sin 22.5^\circ=\tfrac{1}{2} \left( \sqrt{2-\sqrt{2}} \right)</math> |
||
: <math>\cos\frac{\pi}{8}=\cos 22.5^\circ=\tfrac{1}{2}(\sqrt{2+\sqrt{2}})\,</math> |
: <math>\cos\frac{\pi}{8}=\cos 22.5^\circ=\tfrac{1}{2} \left( \sqrt{2+\sqrt{2}} \right)\,</math> |
||
: <math>\tan\frac{\pi}{8}=\tan 22.5^\circ=\sqrt{2}-1\,</math> |
: <math>\tan\frac{\pi}{8}=\tan 22.5^\circ=\sqrt{2}-1\,</math> |
||
第252行: | 第262行: | ||
: <math>\tan\frac{2\pi}{15}=\tan 24^\circ=\tfrac{1}{2}\left[\sqrt{2(25+11\sqrt5)}-\sqrt3(3+\sqrt5)\right]\,</math> |
: <math>\tan\frac{2\pi}{15}=\tan 24^\circ=\tfrac{1}{2}\left[\sqrt{2(25+11\sqrt5)}-\sqrt3(3+\sqrt5)\right]\,</math> |
||
=== 180/7°,<math>\mathbf{\left(25\frac{5}{7}\right)^{\circ}}</math>,<math>\mathbf{\left(\frac{180}{7}\right)^{\circ}}</math>:正七 |
=== 180/7°,<math>\mathbf{\left(25\frac{5}{7}\right)^{\circ}}</math>,<math>\mathbf{\left(\frac{180}{7}\right)^{\circ}}</math>:正七边形=== |
||
{{see|七 |
{{see|七边形}} |
||
: <math>\cos\frac{\pi}{7}=\cos\frac{180}{7}^\circ=\cos 25\frac{5}{7}^\circ=\frac{1}{6}+\frac{1-\sqrt{3} i}{24}\sqrt[3]{28-84\sqrt{3} i}+\frac{1+\sqrt{3} i}{24}\sqrt[3]{28-84\sqrt{3} i}</math> |
: <math>\cos\frac{\pi}{7}=\cos\frac{180}{7}^\circ=\cos 25\frac{5}{7}^\circ=\frac{1}{6}+\frac{1-\sqrt{3} i}{24}\sqrt[3]{28-84\sqrt{3} i}+\frac{1+\sqrt{3} i}{24}\sqrt[3]{28-84\sqrt{3} i}</math> |
||
第262行: | 第272行: | ||
: <math>\tan\frac{3\pi}{20}=\tan 27^\circ=\sqrt5-1-\sqrt{5-2\sqrt5}\,</math> |
: <math>\tan\frac{3\pi}{20}=\tan 27^\circ=\sqrt5-1-\sqrt{5-2\sqrt5}\,</math> |
||
=== 30°:正六 |
=== 30°:正六边形 === |
||
{{see|六 |
{{see|六边形}} |
||
: <math>\sin\frac{\pi}{6}=\sin 30^\circ=\tfrac{1}{2}\,</math> |
: <math>\sin\frac{\pi}{6}=\sin 30^\circ=\tfrac{1}{2}\,</math> |
||
: <math>\cos\frac{\pi}{6}=\cos 30^\circ=\tfrac{1}{2}\sqrt3\,</math> |
: <math>\cos\frac{\pi}{6}=\cos 30^\circ=\tfrac{1}{2}\sqrt3\,</math> |
||
第275行: | 第285行: | ||
: <math>\cot\frac{11\pi}{60}=\cot33^\circ=\tfrac{1}{4}\left(2\sqrt3+\sqrt5+1\right)\left(2\sqrt{5+2\sqrt5}-3-\sqrt5\right)\,</math> |
: <math>\cot\frac{11\pi}{60}=\cot33^\circ=\tfrac{1}{4}\left(2\sqrt3+\sqrt5+1\right)\left(2\sqrt{5+2\sqrt5}-3-\sqrt5\right)\,</math> |
||
=== 36°:正五 |
=== 36°:正五边形 === |
||
{{see|五 |
{{see|五边形}} |
||
: <math>\sin\frac{\pi}{5}=\sin 36^\circ=\tfrac14\left[\sqrt{2\left(5-\sqrt5\right)}\right]\,</math> |
: <math>\sin\frac{\pi}{5}=\sin 36^\circ=\tfrac14\left[\sqrt{2\left(5-\sqrt5\right)}\right]\,</math> |
||
: <math>\cos\frac{\pi}{5}=\cos 36^\circ=\frac{1+\sqrt5}{4}=\tfrac{1}{2}\varphi\,</math> |
: <math>\cos\frac{\pi}{5}=\cos 36^\circ=\frac{1+\sqrt5}{4}=\tfrac{1}{2}\varphi\,</math> |
||
第301行: | 第311行: | ||
: <math>\cos\frac{\pi}{4}=\cos 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math> |
: <math>\cos\frac{\pi}{4}=\cos 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math> |
||
: <math>\tan\frac{\pi}{4}=\tan 45^\circ=1</math> |
: <math>\tan\frac{\pi}{4}=\tan 45^\circ=1</math> |
||
=== 48° === |
|||
: <math>\sin 48^\circ=\frac{1}{4}\sqrt{7-\sqrt{5}+\sqrt{6(5-\sqrt{5})}}</math> |
|||
===54°:27°与27°的和=== |
|||
:<math>\sin\frac{3\pi}{10}=\sin 54^\circ=\frac{\sqrt5+1}{4}\,\!</math> |
|||
:<math>\cos\frac{3\pi}{10}=\cos 54^\circ=\frac{\sqrt{10-2\sqrt{5}}}{4}</math> |
|||
:<math>\tan\frac{3\pi}{10}=\tan 54^\circ=\frac{\sqrt{25+10\sqrt{5}}}{5}\,</math> |
|||
:<math>\cot\frac{3\pi}{10}=\cot 54^\circ=\sqrt{5-2\sqrt{5}}\,</math> |
|||
===60°:等边三角形=== |
|||
:<math>\sin\frac{\pi}{3}=\sin 60^\circ=\frac{\sqrt3}{2}\,</math> |
|||
:<math>\cos\frac{\pi}{3}=\cos 60^\circ=\frac{1}{2}\,</math> |
|||
:<math>\tan\frac{\pi}{3}=\tan 60^\circ=\sqrt3\,</math> |
|||
:<math>\cot\frac{\pi}{3}=\cot 60^\circ=\frac{\sqrt3}{3}=\frac{1}{\sqrt3}\,</math> |
|||
===67.5°:7.5°与60°的和=== |
|||
:<math>\sin\frac{3\pi}{8}=\sin 67.5^\circ=\tfrac{1}{2}\sqrt{2+\sqrt{2}}\,</math> |
|||
:<math>\cos\frac{3\pi}{8}=\cos 67.5^\circ=\tfrac{1}{2}\sqrt{2-\sqrt{2}}\,</math> |
|||
:<math>\tan\frac{3\pi}{8}=\tan 67.5^\circ=\sqrt{2}+1\,</math> |
|||
:<math>\cot\frac{3\pi}{8}=\cot 67.5^\circ=\sqrt{2}-1\,</math> |
|||
===72°:36°的二倍=== |
|||
:<math>\sin\frac{2\pi}{5}=\sin 72^\circ=\tfrac{1}{4}\sqrt{2\left(5+\sqrt5\right)}\,</math> |
|||
:<math>\cos\frac{2\pi}{5}=\cos 72^\circ=\tfrac{1}{4}\left(\sqrt5-1\right)\,</math> |
|||
:<math>\tan\frac{2\pi}{5}=\tan 72^\circ=\sqrt{5+2\sqrt 5}\,</math> |
|||
:<math>\cot\frac{2\pi}{5}=\cot 72^\circ=\tfrac{1}{5}\sqrt{5\left(5-2\sqrt5\right)}\,</math> |
|||
=== 75°: 30°与45°的和 === |
|||
:<math>\sin\frac{5\pi}{12}=\sin 75^\circ=\tfrac{1}{4}\left(\sqrt6+\sqrt2\right)\,</math> |
|||
:<math>\cos\frac{5\pi}{12}=\cos 75^\circ=\tfrac{1}{4}\left(\sqrt6-\sqrt2\right)\,</math> |
|||
:<math>\tan\frac{5\pi}{12}=\tan 75^\circ=2+\sqrt3\,</math> |
|||
:<math>\cot\frac{5\pi}{12}=\cot 75^\circ=2-\sqrt3\,</math> |
|||
=== 81° === |
|||
:<math>\sin 81^\circ=\frac{1}{2}\sqrt{\frac{1}{2}\Big(4+\sqrt{2(5+\sqrt{5})}\Big)}</math> |
|||
=== 90°:根本 === |
|||
:<math>\sin \frac{\pi}{2}=\sin 90^\circ=1\,</math> |
|||
:<math>\cos \frac{\pi}{2}=\cos 90^\circ=0\,</math> |
|||
:<math>\cot \frac{\pi}{2}=\cot 90^\circ=0\,</math> |
|||
==列表== |
==列表== |
||
第378行: | 第429行: | ||
|- |
|- |
||
|14 |
|14 |
||
|<math>\frac{1}{24}\sqrt{3\left(112-\sqrt[3]{14336+\sqrt{-5549064193}}-\sqrt[3]{14336-\sqrt{-5549064193}}\right)} |
|<math>\frac{1}{24}\sqrt{3\left(112-\sqrt[3]{14336+\sqrt{-5549064193}}-\sqrt[3]{14336-\sqrt{-5549064193}}\right)} </math> |
||
</math> |
|||
|<math>\frac{1}{24}\sqrt{3\left(80+\sqrt[3]{14336+\sqrt{-5549064193}}+\sqrt[3]{14336-\sqrt{-5549064193}}\right)} </math> |
|<math>\frac{1}{24}\sqrt{3\left(80+\sqrt[3]{14336+\sqrt{-5549064193}}+\sqrt[3]{14336-\sqrt{-5549064193}}\right)} </math> |
||
|<math>\sqrt{\frac{112-\sqrt[3]{14336+\sqrt{-5549064193}}-\sqrt[3]{14336-\sqrt{-5549064193}}}{80+\sqrt[3]{14336+\sqrt{-5549064193}}+\sqrt[3]{14336-\sqrt{-5549064193}}}}</math> |
|<math>\sqrt{\frac{112-\sqrt[3]{14336+\sqrt{-5549064193}}-\sqrt[3]{14336-\sqrt{-5549064193}}}{80+\sqrt[3]{14336+\sqrt{-5549064193}}+\sqrt[3]{14336-\sqrt{-5549064193}}}}</math> |
||
第394行: | 第444行: | ||
|- |
|- |
||
|17 |
|17 |
||
|<math>\frac{1}{4}\sqrt{8-\sqrt{2\left(15+\sqrt{17}+\sqrt{34-2\sqrt{17}}-2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}\right)}}</math> |
|||
| |
|||
|<math>\frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}\right)</math> |
|<math>\frac{1}{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}\right)</math> |
||
| |
| |
||
第446行: | 第496行: | ||
* {{MathWorld|title=Constructible polygon|urlname=ConstructiblePolygon}} |
* {{MathWorld|title=Constructible polygon|urlname=ConstructiblePolygon}} |
||
* {{MathWorld|title=Trigonometry angles|urlname=TrigonometryAngles}} |
* {{MathWorld|title=Trigonometry angles|urlname=TrigonometryAngles}} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi3.html π/3 (60°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi6.html π/6 (30°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi12.html π/12 (15°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi24.html π/24 (7.5°)] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi3.html π/3 (60°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi3.html |date=20110212164640 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi6.html π/6 (30°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi6.html |date=20110522183409 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi12.html π/12 (15°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi12.html |date=20100717010251 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi24.html π/24 (7.5°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi24.html |date=20101024141647 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi4.html π/4 (45°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi8.html π/8 (22.5°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi16.html π/16 (11.25°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi32.html π/32 (5.625°)] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi4.html π/4 (45°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi4.html |date=20110522183132 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi8.html π/8 (22.5°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi8.html |date=20110522183536 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi16.html π/16 (11.25°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi16.html |date=20110521041823 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi32.html π/32 (5.625°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi32.html |date=20110522185037 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi5.html π/5 (36°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi10.html π/10 (18°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi20.html π/20 (9°)] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi5.html π/5 (36°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi5.html |date=20110522183141 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi10.html π/10 (18°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi10.html |date=20101031084302 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi20.html π/20 (9°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi20.html |date=20110522184929 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi7.html π/7]—''π/14'' |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi7.html π/7]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi7.html |date=20101119052456 }}—''π/14'' |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi9.html π/9 (20°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi18.html π/18 (10°)] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi9.html π/9 (20°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi9.html |date=20110211115235 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi18.html π/18 (10°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi18.html |date=20110522184700 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi11.html π/11] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi11.html π/11]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi11.html |date=20110522184232 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi13.html π/13] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi13.html π/13]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi13.html |date=20110522184549 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi15.html π/15 (12°)]—[http://mathworld.wolfram.com/TrigonometryAnglesPi30.html π/30 (6°)] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi15.html π/15 (12°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi15.html |date=20101024141641 }}—[http://mathworld.wolfram.com/TrigonometryAnglesPi30.html π/30 (6°)]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi30.html |date=20101024141651 }} |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi17.html π/17] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi17.html π/17]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi17.html |date=20101027111119 }} |
||
** ''π/19'' |
** ''π/19'' |
||
** [http://mathworld.wolfram.com/TrigonometryAnglesPi23.html π/23] |
** [http://mathworld.wolfram.com/TrigonometryAnglesPi23.html π/23]{{Wayback|url=http://mathworld.wolfram.com/TrigonometryAnglesPi23.html |date=20110522185320 }} |
||
* {{Cite journal |
* {{Cite journal |
||
|first1=Paul |
|first1=Paul |
||
第533行: | 第583行: | ||
{{三角函數}} |
{{三角函數}} |
||
{{無理數導航}} |
|||
[[Category:三角學]] |
[[Category:三角學]] |
||
[[Category:三角函数]] |
[[Category:三角函数]] |
2024年5月31日 (五) 12:19的最新版本
三角学 |
---|
参考 |
定理 |
微积分 |
三角函數精確值是利用三角函數的公式將特定的三角函數值加以化簡,並以數學根式或分數表示。
用根式或分數表達的精確三角函數有時很有用,主要用於簡化的解決某些方程式能進一步化簡。
根据尼云定理,有理数度数的角的正弦值,其中的有理数仅有0,,±1。
角度單位 | 值 | |||||||
---|---|---|---|---|---|---|---|---|
轉 | ||||||||
角度 | ||||||||
弧度 | ||||||||
梯度 |
計算方式
[编辑]基於常識
[编辑]例如:0°、30°、45°
經由半角公式的計算
[编辑]例如:15°、22.5°
利用三倍角公式求角
[编辑]例如:10°、20°、7°......等等,非三的倍數的角的精確值。
把它改為
把當成未知數,當成常數項 解一元三次方程式即可求出
例如:
同樣地,若角度代未知數,則會得到三分之一角公式。
经由欧拉公式的计算
[编辑]例如:
經由和角公式的計算
[编辑]例如:21° = 9° + 12°
經由托勒密定理的計算
[编辑]例如:18°
根據托勒密定理,在圓內接四邊形ABCD中,
三角函数精确值列表
[编辑]由于三角函数的特性,大于45°角度的三角函数值,可以经由自0°~45°的角度的三角函数值的相关的计算取得。
0°:根本
[编辑]1°:2°的一半
[编辑]1.5°:正一百二十边形
[编辑]1.875°:正九十六边形
[编辑]2°:6°的三分之一
[编辑]2.25°:正八十边形
[编辑]2.8125°:正六十四边形
[编辑]3°:正六十边形
[编辑]3.75°:正四十八边形
[编辑]4°:12°的三分之一
[编辑]4.5°:正四十边形
[编辑]5°:15°的三分之一、正三十六边形
[编辑]5.625°:正三十二边形
[编辑]6°:正三十边形
[编辑]7.5°:正二十四边形
[编辑]9°:正二十边形
[编辑]10°:正十八边形
[编辑]11.25°:正十六边形
[编辑]12°:正十五边形
[编辑]15°:正十二边形
[编辑]18°:正十边形
[编辑]20°:正九边形、60°的三分之一
[编辑]21°:9°与12°的和
[编辑]360/17°,,:正十七边形
[编辑]22.5°:正八边形
[编辑]24°:12°的二倍
[编辑]180/7°,,:正七边形
[编辑]27°:12°与15°的和
[编辑]30°:正六边形
[编辑]33°:15°与18°的和
[编辑]36°:正五边形
[编辑]39°:18°与21°的和
[编辑]42°:21°的2倍
[编辑]45°:正方形
[编辑]48°
[编辑]54°:27°与27°的和
[编辑]60°:等边三角形
[编辑]67.5°:7.5°与60°的和
[编辑]72°:36°的二倍
[编辑]75°: 30°与45°的和
[编辑]81°
[编辑]90°:根本
[编辑]列表
[编辑]在下表中,為虛數單位,。
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
14 | |||
15 | |||
16 | |||
17 | |||
18 | |||
19 | |||
20 | |||
21 | |||
22 | |||
23 | |||
24 |
相關
[编辑]參見
[编辑]參考文獻
[编辑]- 埃里克·韦斯坦因. Constructible polygon. MathWorld.
- 埃里克·韦斯坦因. Trigonometry angles. MathWorld.
- π/3 (60°)(页面存档备份,存于互联网档案馆)—π/6 (30°)(页面存档备份,存于互联网档案馆)—π/12 (15°)(页面存档备份,存于互联网档案馆)—π/24 (7.5°)(页面存档备份,存于互联网档案馆)
- π/4 (45°)(页面存档备份,存于互联网档案馆)—π/8 (22.5°)(页面存档备份,存于互联网档案馆)—π/16 (11.25°)(页面存档备份,存于互联网档案馆)—π/32 (5.625°)(页面存档备份,存于互联网档案馆)
- π/5 (36°)(页面存档备份,存于互联网档案馆)—π/10 (18°)(页面存档备份,存于互联网档案馆)—π/20 (9°)(页面存档备份,存于互联网档案馆)
- π/7(页面存档备份,存于互联网档案馆)—π/14
- π/9 (20°)(页面存档备份,存于互联网档案馆)—π/18 (10°)(页面存档备份,存于互联网档案馆)
- π/11(页面存档备份,存于互联网档案馆)
- π/13(页面存档备份,存于互联网档案馆)
- π/15 (12°)(页面存档备份,存于互联网档案馆)—π/30 (6°)(页面存档备份,存于互联网档案馆)
- π/17(页面存档备份,存于互联网档案馆)
- π/19
- π/23(页面存档备份,存于互联网档案馆)
- Bracken, Paul; Cizek, Jiri. Evaluation of quantum mechanical perturbation sums in terms of quadratic surds and their use in approximation of zeta(3)/pi^3. Int. J. Quantum Chemistry. 2002, 90 (1): 42–53. doi:10.1002/qua.1803.
- Conway, John H.; Radin, Charles; Radun, Lorenzo. On angles whose squared trigonometric functions are rational. 1998. arXiv:math-ph/9812019 .
- Conway, John H.; Radin, Charles; Radun, Lorenzo. On angles whose squared trigonometric functions are rational. Disc. Comput. Geom. 1999, 22 (3): 321–332. doi:10.1007/PL00009463. MR1706614
- Girstmair, Kurt. Some linear relations between values of trigonometric functions at k*pi/n. Acta Arithmetica. 1997, 81: 387–398. MR1472818
- Gurak, S. On the minimal polynomial of gauss periods for prime powers. Mathematics of Computation. 2006, 75 (256): 2021–2035. Bibcode:2006MaCom..75.2021G. doi:10.1090/S0025-5718-06-01885-0. MR2240647
- Servi, L. D. Nested square roots of 2. Am. Math. Monthly. 2003, 110 (4): 326–330. doi:10.2307/3647881. MR1984573
注释
[编辑]- ^ 由Wolfram Alpha验算:[1] (页面存档备份,存于互联网档案馆)
- ^ 使用Mathematica驗算,代碼為N[ArcSin[(1 + Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] + (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1] + (1 - Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] - (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1]], 100]/Degree結果為1與原角度無誤差