跳转到内容

丁香假单胞菌:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
机器人:多次引用同一个参考文献只需定义一次(2个新参考文献,以及调用了3次新参考文献。)
修饰语句
 
(未显示2个用户的3个中间版本)
第17行: 第17行:
}}
}}


'''丁香假单胞菌''(Pseudomonas syringae)'''''是一种具有单极[[鞭毛]]的杆状[[革兰氏阴性菌|革兰氏阴性]]细菌,属于[[假单胞菌属]],依据16S[[核糖體核糖核酸|rRNA]]测序结果归入丁香假单胞菌组,<ref>{{Cite journal |last=Anzai |first=Y |last2=Kim |first2=H |last3=Park |first3=JY |last4=Wakabayashi |first4=H |last5=Oyaizu |first5=H |year=2000 |title=Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence |journal=International Journal of Systematic and Evolutionary Microbiology |volume=50 |issue=4 |page=1563–89 |doi=10.1099/00207713-50-4-1563 |pmid=10939664}}</ref> 因首次从欧丁香 (''[[欧丁香|Syringa vulgaris]]'' ) 中分离出而得名。<ref>{{Cite book|editor-last=Kreig|editor-first=N. R.|editor2-last=Holt|editor2-first=J. G.|year=1984|title=Bergey's Manual of Systematic Biology|location=Baltimore|publisher=Williams and Wilkins|pages=141–99}}</ref> 作为一种[[植物病理學|植物病原体]],它的感染范围广泛,存在50多种不同的{{Tsl|en|Pathovar|4=病株}}。<ref>{{Cite journal |last=Arnold |first=DL |last2=Preston |first2=GM |year=2019 |title=''Pseudomonas syringae'': enterprising epiphyte and stealthy parasite |journal=Microbiology |volume=165 |issue=3 |page=251–53 |doi=10.1099/mic.0.000715 |pmid=30427303 |doi-access=free}}</ref>
'''丁香假单胞菌''(Pseudomonas syringae)'''''是一种具有单极[[鞭毛]]的杆状[[革兰氏阴性菌|革兰氏阴性]]细菌,属于[[假单胞菌属]],依据16S [[核糖體核糖核酸|rRNA]]测序结果归入丁香假单胞菌组,<ref>{{Cite journal |last=Anzai |first=Y |last2=Kim |first2=H |last3=Park |first3=JY |last4=Wakabayashi |first4=H |last5=Oyaizu |first5=H |year=2000 |title=Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence |journal=International Journal of Systematic and Evolutionary Microbiology |volume=50 |issue=4 |page=1563–89 |doi=10.1099/00207713-50-4-1563 |pmid=10939664}}</ref> 因首次从欧丁香 (''[[欧丁香|Syringa vulgaris]]'' ) 中分离出而得名。<ref>{{Cite book|editor-last=Kreig|editor-first=N. R.|editor2-last=Holt|editor2-first=J. G.|year=1984|title=Bergey's Manual of Systematic Biology|location=Baltimore|publisher=Williams and Wilkins|pages=141–99}}</ref> 作为一种[[植物病理學|植物病原体]],它的感染范围广泛,50多种不同的{{Tsl|en|Pathovar|4=病株}}。<ref>{{Cite journal |last=Arnold |first=DL |last2=Preston |first2=GM |year=2019 |title=''Pseudomonas syringae'': enterprising epiphyte and stealthy parasite |journal=Microbiology |volume=165 |issue=3 |page=251–53 |doi=10.1099/mic.0.000715 |pmid=30427303 |doi-access=free}}</ref>


丁香假单胞菌的{{Tsl|en|Arginine dihydrolase|4=精氨酸二肽水解酶}}和{{Tsl|en|Oxidase test|4=氧化酶活性检测}}结果为阴性,在含蔗糖的琼脂培养基上形成[[果聚糖]]大分子。许多(但不是全部)菌株可以分泌一种叫{{Tsl|en|Syringomycin|4=丁香霉素}}的植物毒素溶解细胞膜。 <ref name="pmid12744455">{{Cite journal |last=Scholz-Schroeder |first=Brenda K. |last2=Soule |first2=Jonathan D. |last3=Gross |first3=Dennis C. |year=2003 |title=The ''sypA'', ''sypB'', and ''sypC'' Synthetase Genes Encode Twenty-Two Modules Involved in the Nonribosomal Peptide Synthesis of Syringopeptin by ''Pseudomonas syringae'' pv. ''syringae'' B301D |journal=Molecular Plant-Microbe Interactions |volume=16 |issue=4 |page=271–80 |doi=10.1094/MPMI.2003.16.4.271 |pmid=12744455 |doi-access=free}}</ref>
丁香假单胞菌的{{Tsl|en|Arginine dihydrolase|4=精氨酸二肽水解酶}}和{{Tsl|en|Oxidase test|4=氧化酶活性检测}}结果为阴性,在含蔗糖的琼脂培养基上形成[[果聚糖]]大分子。许多菌株可以分泌一种叫{{Tsl|en|Syringomycin|4=丁香霉素}}的植物毒素溶解细胞膜。 <ref name="pmid12744455">{{Cite journal |last=Scholz-Schroeder |first=Brenda K. |last2=Soule |first2=Jonathan D. |last3=Gross |first3=Dennis C. |year=2003 |title=The ''sypA'', ''sypB'', and ''sypC'' Synthetase Genes Encode Twenty-Two Modules Involved in the Nonribosomal Peptide Synthesis of Syringopeptin by ''Pseudomonas syringae'' pv. ''syringae'' B301D |journal=Molecular Plant-Microbe Interactions |volume=16 |issue=4 |page=271–80 |doi=10.1094/MPMI.2003.16.4.271 |pmid=12744455 |doi-access=free}}</ref>


丁香假单胞菌可以合成{{Tsl|en|Snowmaking|4=冰核活性(INA)蛋白}},促使植物体内的水在高于正常值的温度(−3.8~−1.8℃)下结冰,造成组织损伤。 <ref>{{Cite journal |last=Maki |first=Leroy |date=Sep 1974 |title=Ice Nucleation Induced by ''Pseudomonas syringae'' |journal=Applied Microbiology |volume=28 |issue=3 |page=456–59 |doi=10.1128/AEM.28.3.456-459.1974 |pmc=186742 |pmid=4371331}}</ref> INA蛋白也常用于人造雪。<ref>{{Cite news|url=https://www.nytimes.com/2010/05/25/science/25snow.html|title=From Trees and Grass, Bacteria That Cause Snow and Rain|date=24 May 2010|work=The New York Times|first=Jim|author=Robbins}}</ref> 有人在[[冰核|冰雹凝结核]]中检测到大量丁香假单胞菌,表明其在地球水循环中发挥作用。<ref>{{Cite news|title=Bacteria-rich hailstones add to 'bioprecipitation' idea|url=https://www.bbc.com/news/science-environment-13523502|newspaper=BBC News|date=2011-05-25|accessdate=2023-02-19|language=en-GB}}</ref>
丁香假单胞菌可以合成{{Tsl|en|Snowmaking|4=冰核活性(INA)蛋白}},促使植物体内的水在高于正常值的温度(−3.8~−1.8℃)下结冰,造成组织损伤。 <ref>{{Cite journal |last=Maki |first=Leroy |date=Sep 1974 |title=Ice Nucleation Induced by ''Pseudomonas syringae'' |journal=Applied Microbiology |volume=28 |issue=3 |page=456–59 |doi=10.1128/AEM.28.3.456-459.1974 |pmc=186742 |pmid=4371331}}</ref> INA蛋白也常用于人造雪。<ref>{{Cite news|url=https://www.nytimes.com/2010/05/25/science/25snow.html|title=From Trees and Grass, Bacteria That Cause Snow and Rain|date=24 May 2010|work=The New York Times|first=Jim|author=Robbins|accessdate=2023-02-19|archive-date=2023-05-31|archive-url=https://web.archive.org/web/20230531011037/http://www.nytimes.com/2010/05/25/science/25snow.html|dead-url=no}}</ref> 有人在[[冰核|冰雹凝结核]]中检测到大量丁香假单胞菌,表明其在地球水循环中发挥作用。<ref>{{Cite news|title=Bacteria-rich hailstones add to 'bioprecipitation' idea|url=https://www.bbc.com/news/science-environment-13523502|newspaper=BBC News|date=2011-05-25|accessdate=2023-02-19|language=en-GB|archive-date=2023-02-19|archive-url=https://web.archive.org/web/20230219122138/https://www.bbc.com/news/science-environment-13523502|dead-url=no}}</ref>


丁香假单胞菌通过 [[III型分泌系统|III 型分泌系统]]将{{Tsl|en|Effector (biology)|4=效应蛋白}}跨膜注射到植物细胞内,由此致病。在丁香假单胞菌中已鉴定出近60种III型效应蛋白,它们由''hop''基因编码。<ref name="Httppseudomonassyringaeorg">{{Cite web|date=2010-09-03|title=PPI home – ''Pseudomonas''-Plant Interaction – ''Pseudomonas syringae'' Genome Resources Home Page|url=http://pseudomonas-syringae.org/|access-date=2022-03-22|publisher=[[Cornell University]] & [[National Science Foundation]] & [[USDA ARS]]}}</ref> 由于此物种的基因组序列破译较早,且所选菌株的宿主植物(包括[[拟南芥]]、本塞姆氏烟草和[[番茄|番茄)]]特征鲜明,丁香假单胞菌可以作为代表性物种用于研究[[植物病理學|植物-病原体相互作用]]。<ref>{{Cite journal |last=Mansfield |first=John |date=2012 |title=Top 10 plant pathogenic bacteria in molecular plant pathology |journal=Molecular Plant Pathology |volume=13 |issue=6 |page=614–29 |doi=10.1111/j.1364-3703.2012.00804.x |pmc=6638704 |pmid=22672649}}</ref>
丁香假单胞菌通过 [[III型分泌系统|III 型分泌系统]]将{{Tsl|en|Effector (biology)|4=效应蛋白}}跨膜注射到植物细胞内,由此致病。在丁香假单胞菌中已鉴定出近60种III型效应蛋白,它们由''hop''基因编码。<ref name="Httppseudomonassyringaeorg">{{Cite web|date=2010-09-03|title=PPI home – ''Pseudomonas''-Plant Interaction – ''Pseudomonas syringae'' Genome Resources Home Page|url=http://pseudomonas-syringae.org/|access-date=2022-03-22|publisher=[[Cornell University]] & [[National Science Foundation]] & [[USDA ARS]]|archive-date=2023-03-26|archive-url=https://web.archive.org/web/20230326142318/http://pseudomonas-syringae.org/|dead-url=no}}</ref> 由于此物种的基因组序列破译较早,且所选菌株的宿主植物(包括[[拟南芥]]、本塞姆氏烟草和[[番茄|番茄)]]特征鲜明,丁香假单胞菌可以作为代表性物种用于研究[[植物病理學|植物-病原体相互作用]]。<ref>{{Cite journal |last=Mansfield |first=John |date=2012 |title=Top 10 plant pathogenic bacteria in molecular plant pathology |journal=Molecular Plant Pathology |volume=13 |issue=6 |page=614–29 |doi=10.1111/j.1364-3703.2012.00804.x |pmc=6638704 |pmid=22672649}}</ref>


== 基因型 ==
== 基因型 ==
通过对假单胞菌属的全部494个完整基因组进行[[系统基因组学|系统基因组]]分析,人们发现丁香假单胞菌并不是严格意义上的单系物种,而是一个范围更广的进化群体,还包括了''P. avellanae'', ''P. savastanoi'', ''P. amygdali'', ''P. cerasi'' 等多个物种。<ref name=":1">{{Cite journal |last=Nikolaidis |first=Marios |last2=Mossialos |first2=Dimitris |last3=Oliver |first3=Stephen G. |last4=Amoutzias |first4=Grigorios D. |date=August 2020 |title=Comparative Analysis of the Core Proteomes among the ''Pseudomonas'' Major Evolutionary Groups Reveals Species-Specific Adaptations for ''Pseudomonas aeruginosa'' and ''Pseudomonas chlororaphis'' |journal=Diversity |language=en |volume=12 |issue=8 |page=289 |doi=10.3390/d12080289 |doi-access=free}}</ref> 丁香假单胞菌的核心蛋白质组包括2944个蛋白。<ref>{{Cite journal |last=Nikolaidis |first=Marios |last2=Mossialos |first2=Dimitris |last3=Oliver |first3=Stephen G. |last4=Amoutzias |first4=Grigorios D. |date=2020-08 |title=Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis |url=https://www.mdpi.com/1424-2818/12/8/289 |journal=Diversity |language=en |volume=12 |issue=8 |doi=10.3390/d12080289 |issn=1424-2818}}</ref>
通过对假单胞菌属的全部494个完整基因组进行[[系统基因组学|系统基因组]]分析,人们发现丁香假单胞菌并不是严格意义上的单系物种,而是一个范围更广的进化群体,还包括了''P. avellanae'', ''P. savastanoi'', ''P. amygdali'', ''P. cerasi'' 等多个物种。<ref name=":1">{{Cite journal |last=Nikolaidis |first=Marios |last2=Mossialos |first2=Dimitris |last3=Oliver |first3=Stephen G. |last4=Amoutzias |first4=Grigorios D. |date=August 2020 |title=Comparative Analysis of the Core Proteomes among the ''Pseudomonas'' Major Evolutionary Groups Reveals Species-Specific Adaptations for ''Pseudomonas aeruginosa'' and ''Pseudomonas chlororaphis'' |journal=Diversity |language=en |volume=12 |issue=8 |page=289 |doi=10.3390/d12080289 |doi-access=free}}</ref> 丁香假单胞菌的核心蛋白质组包括2944个蛋白。<ref>{{Cite journal |last=Nikolaidis |first=Marios |last2=Mossialos |first2=Dimitris |last3=Oliver |first3=Stephen G. |last4=Amoutzias |first4=Grigorios D. |date=2020-08 |title=Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis |url=https://www.mdpi.com/1424-2818/12/8/289 |journal=Diversity |language=en |volume=12 |issue=8 |doi=10.3390/d12080289 |issn=1424-2818 |access-date=2023-02-19 |archive-date=2022-12-15 |archive-url=https://web.archive.org/web/20221215235830/https://www.mdpi.com/1424-2818/12/8/289 |dead-url=no }}</ref>


== 致病性 ==
== 致病性 ==


=== 周期活动 ===
=== 周期活动 ===
丁香假单胞菌附生于感染[[壞死|坏死]]的植物组织中过冬。到了春季,雨水将丁香假单胞菌冲刷到花、叶部位,它在新环境中生长繁殖,度过夏季。<ref name="未命名-20230318184028">{{Cite journal |last=Kennelly |first=Megan M. |last2=Cazorla |first2=Francisco M. |last3=de Vicente |first3=Antonio |last4=Ramos |first4=Cayo |last5=Sundin |first5=George W. |date=2007-01-01 |title=Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control |url=https://apsjournals.apsnet.org/doi/10.1094/PD-91-0004 |journal=Plant Disease |volume=91 |issue=1 |doi=10.1094/PD-91-0004 |issn=0191-2917}}</ref> 它可以维持附生模式不断壮大种群、蔓延扩散,但并不致病,直到它通过叶片的[[气孔]]或者组织创口进入植物体内。<ref>{{Cite journal |last=Jeong |first=Rae-Dong |last2=Chu |first2=Eun-Hee |last3=Lee |first3=Gun Woong |last4=Park |first4=Jeong Mee |last5=Park |first5=Hae-Jun |date=2016-06-30 |title=Effect of gamma irradiation on Pseudomonas syringae pv. tomato DC3000 - short communication |url=https://agriculturejournals.cz/ |journal=Plant Protection Science |language=en |volume=52 |issue=2 |doi=10.17221/68/2015-PPS}}</ref> 这时,它将榨取植物体内的营养物质,造成叶斑和叶溃疡。丁香假单胞菌能在略低于零度的环境下生存,而杏树、桃树一类的植物在这一温度下所受的感染更加严重。<ref name="未命名-20230318184028"/>
丁香假单胞菌附生于感染[[壞死|坏死]]的植物组织中过冬。到了春季,雨水将丁香假单胞菌冲刷到花、叶部位,它在新环境中生长繁殖,度过夏季。<ref name="未命名-20230318184028">{{Cite journal |last=Kennelly |first=Megan M. |last2=Cazorla |first2=Francisco M. |last3=de Vicente |first3=Antonio |last4=Ramos |first4=Cayo |last5=Sundin |first5=George W. |date=2007-01-01 |title=Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control |url=https://apsjournals.apsnet.org/doi/10.1094/PD-91-0004 |journal=Plant Disease |volume=91 |issue=1 |doi=10.1094/PD-91-0004 |issn=0191-2917 |access-date=2023-02-19 |archive-date=2023-02-19 |archive-url=https://web.archive.org/web/20230219122040/https://apsjournals.apsnet.org/doi/10.1094/PD-91-0004 |dead-url=no }}</ref> 它可以维持附生模式不断壮大种群、蔓延扩散,但并不致病,直到它通过叶片的[[气孔]]或者组织创口进入植物体内。<ref>{{Cite journal |last=Jeong |first=Rae-Dong |last2=Chu |first2=Eun-Hee |last3=Lee |first3=Gun Woong |last4=Park |first4=Jeong Mee |last5=Park |first5=Hae-Jun |date=2016-06-30 |title=Effect of gamma irradiation on Pseudomonas syringae pv. tomato DC3000 - short communication |url=https://agriculturejournals.cz/ |journal=Plant Protection Science |language=en |volume=52 |issue=2 |doi=10.17221/68/2015-PPS |access-date=2023-02-19 |archive-date=2023-02-19 |archive-url=https://web.archive.org/web/20230219122050/https://agriculturejournals.cz/ |dead-url=no }}</ref> 这时,它将榨取植物体内的营养物质,造成叶斑和叶溃疡。丁香假单胞菌能在略低于零度的环境下生存,而杏树、桃树一类的植物在这一温度下所受的感染更加严重。<ref name="未命名-20230318184028"/>


=== 传播 ===
=== 传播 ===
丁香假单胞菌倾向于在种子里生长,并通过雨水溅射在植物之间扩散。潮湿凉爽的环境更利于疾病的传播,以12~25℃最适宜,但也依具体病株而有所不同。<ref>{{Cite journal |last=Hirano |first=S S |last2=Upper |first2=C D |date=1990-09 |title=Population Biology and Epidemiology of Pseudomonas Syringae |url=https://www.annualreviews.org/doi/10.1146/annurev.py.28.090190.001103 |journal=Annual Review of Phytopathology |language=en |volume=28 |issue=1 |doi=10.1146/annurev.py.28.090190.001103 |issn=0066-4286}}</ref> 当环境不适于疾病传播时,它也可以在叶圈(phyllosphere)营腐生。<ref>{{Cite journal |last=Hirano |first=Susan S. |last2=Upper |first2=Christen D. |date=2000-09 |title=Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae —a Pathogen, Ice Nucleus, and Epiphyte |url=https://journals.asm.org/doi/10.1128/MMBR.64.3.624-653.2000 |journal=Microbiology and Molecular Biology Reviews |language=en |volume=64 |issue=3 |doi=10.1128/MMBR.64.3.624-653.2000 |issn=1092-2172 |pmc=PMC99007 |pmid=10974129}}</ref> 某些腐生菌株可用于抑制成熟农产品的腐烂。<ref>{{Cite journal |last=Janisiewicz |first=W. J. |date=1992 |title=Control of Storage Rots on Various Pear Cultivars with a Saprophytic Strain of Pseudomonas syringae |url=http://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1992Abstracts/PD_76_555545.htm |journal=Plant Disease |volume=76 |issue=6 |doi=10.1094/PD-76-0555 |issn=0191-2917}}</ref>
丁香假单胞菌倾向于在种子里生长,并通过雨水溅射在植物之间扩散。潮湿凉爽的环境更利于疾病的传播,以12~25℃最适宜,但也依具体病株而有所不同。<ref>{{Cite journal |last=Hirano |first=S S |last2=Upper |first2=C D |date=1990-09 |title=Population Biology and Epidemiology of Pseudomonas Syringae |url=https://www.annualreviews.org/doi/10.1146/annurev.py.28.090190.001103 |journal=Annual Review of Phytopathology |language=en |volume=28 |issue=1 |doi=10.1146/annurev.py.28.090190.001103 |issn=0066-4286 |access-date=2023-02-19 |archive-date=2022-10-09 |archive-url=https://web.archive.org/web/20221009182726/https://www.annualreviews.org/doi/10.1146/annurev.py.28.090190.001103 |dead-url=no }}</ref> 当环境不适于疾病传播时,它也可以在叶圈(phyllosphere)营腐生。<ref>{{Cite journal |last=Hirano |first=Susan S. |last2=Upper |first2=Christen D. |date=2000-09 |title=Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae —a Pathogen, Ice Nucleus, and Epiphyte |url=https://journals.asm.org/doi/10.1128/MMBR.64.3.624-653.2000 |journal=Microbiology and Molecular Biology Reviews |language=en |volume=64 |issue=3 |doi=10.1128/MMBR.64.3.624-653.2000 |issn=1092-2172 |pmc=99007 |pmid=10974129 |access-date=2023-02-19 |archive-date=2023-02-19 |archive-url=https://web.archive.org/web/20230219122041/https://journals.asm.org/doi/10.1128/MMBR.64.3.624-653.2000 |dead-url=no }}</ref> 某些腐生菌株可用于抑制成熟农产品的腐烂。<ref>{{Cite journal |last=Janisiewicz |first=W. J. |date=1992 |title=Control of Storage Rots on Various Pear Cultivars with a Saprophytic Strain of Pseudomonas syringae |url=http://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1992Abstracts/PD_76_555545.htm |journal=Plant Disease |volume=76 |issue=6 |doi=10.1094/PD-76-0555 |issn=0191-2917 }}{{Dead link}}</ref>


=== 致病机制 ===
=== 致病机制 ===


==== · 侵入植物体 ====
==== · 侵入植物体 ====
浮游状态的丁香假单胞菌可以通过[[鞭毛]]和[[性菌毛|菌毛]]的运动游向目标宿主,从伤口或天然的开放组织进入植物体内,因为它无法破坏细胞壁。例如,它与一种在叶片上打洞产卵的苍蝇(''Scaptomyza flava'')是合作关系。<ref>{{Cite journal |last=Groen |first=Simon C. |last2=Humphrey |first2=Parris T. |last3=Chevasco |first3=Daniela |last4=Ausubel |first4=Frederick M. |last5=Pierce |first5=Naomi E. |last6=Whiteman |first6=Noah K. |date=2016-01-01 |title=Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis |url=https://www.sciencedirect.com/science/article/pii/S0022191015001596 |journal=Journal of Insect Physiology |series=plant-reprogramming insects: from effector molecules to ecosystem engineering |language=en |volume=84 |doi=10.1016/j.jinsphys.2015.07.011 |issn=0022-1910 |pmc=PMC4721946 |pmid=26205072}}</ref>
浮游状态的丁香假单胞菌可以通过[[鞭毛]]和[[性菌毛|菌毛]]的运动游向目标宿主,从伤口或天然的开放组织进入植物体内,因为它无法破坏细胞壁。例如,它与一种在叶片上打洞产卵的苍蝇(''Scaptomyza flava'')是合作关系。<ref>{{Cite journal |last=Groen |first=Simon C. |last2=Humphrey |first2=Parris T. |last3=Chevasco |first3=Daniela |last4=Ausubel |first4=Frederick M. |last5=Pierce |first5=Naomi E. |last6=Whiteman |first6=Noah K. |date=2016-01-01 |title=Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis |url=https://www.sciencedirect.com/science/article/pii/S0022191015001596 |journal=Journal of Insect Physiology |series=plant-reprogramming insects: from effector molecules to ecosystem engineering |language=en |volume=84 |doi=10.1016/j.jinsphys.2015.07.011 |issn=0022-1910 |pmc=4721946 |pmid=26205072}}</ref>


==== · 应对宿主的防御 ====
==== · 应对宿主的防御 ====

2024年7月27日 (六) 12:35的最新版本

丁香假单胞菌
Cultures of Pseudomonas syringae
科学分类 编辑
域: 细菌域 Bacteria
门: 假單胞菌門 Pseudomonadota
纲: γ-變形菌綱 Gammaproteobacteria
目: 假單胞菌目 Pseudomonadales
科: 假单胞菌科 Pseudomonadaceae
属: 假单胞菌属 Pseudomonas
种:
丁香假单胞菌 P. syringae
二名法
Pseudomonas syringae
Van Hall, 1904
模式菌株
ATCC 19310

CCUG 14279
CFBP 1392
CIP 106698
ICMP 3023
LMG 1247
NCAIM B.01398
NCPPB 281
NRRL B-1631

丁香假单胞菌(Pseudomonas syringae)是一种具有单极鞭毛的杆状革兰氏阴性细菌,属于假单胞菌属,依据16S rRNA测序结果归入丁香假单胞菌组,[1] 因首次从欧丁香 (Syringa vulgaris ) 中分离出而得名。[2] 作为一种植物病原体,它的感染范围广泛,有50多种不同的病株英语Pathovar[3]

丁香假单胞菌的精氨酸二肽水解酶英语Arginine dihydrolase氧化酶活性检测英语Oxidase test结果为阴性,在含蔗糖的琼脂培养基上形成果聚糖大分子。许多菌株可以分泌一种叫丁香霉素英语Syringomycin的植物毒素溶解细胞膜。 [4]

丁香假单胞菌可以合成冰核活性(INA)蛋白英语Snowmaking,促使植物体内的水在高于正常值的温度(−3.8~−1.8℃)下结冰,造成组织损伤。 [5] INA蛋白也常用于人造雪。[6] 有人在冰雹凝结核中检测到大量丁香假单胞菌,表明其在地球水循环中发挥作用。[7]

丁香假单胞菌通过 III 型分泌系统效应蛋白英语Effector (biology)跨膜注射到植物细胞内,由此致病。在丁香假单胞菌中已鉴定出近60种III型效应蛋白,它们由hop基因编码。[8] 由于此物种的基因组序列破译较早,且所选菌株的宿主植物(包括拟南芥、本塞姆氏烟草和番茄)特征鲜明,丁香假单胞菌可以作为代表性物种用于研究植物-病原体相互作用[9]

基因型

[编辑]

通过对假单胞菌属的全部494个完整基因组进行系统基因组分析,人们发现丁香假单胞菌并不是严格意义上的单系物种,而是一个范围更广的进化群体,还包括了P. avellanae, P. savastanoi, P. amygdali, P. cerasi 等多个物种。[10] 丁香假单胞菌的核心蛋白质组包括2944个蛋白。[11]

致病性

[编辑]

周期活动

[编辑]

丁香假单胞菌附生于感染坏死的植物组织中过冬。到了春季,雨水将丁香假单胞菌冲刷到花、叶部位,它在新环境中生长繁殖,度过夏季。[12] 它可以维持附生模式不断壮大种群、蔓延扩散,但并不致病,直到它通过叶片的气孔或者组织创口进入植物体内。[13] 这时,它将榨取植物体内的营养物质,造成叶斑和叶溃疡。丁香假单胞菌能在略低于零度的环境下生存,而杏树、桃树一类的植物在这一温度下所受的感染更加严重。[12]

传播

[编辑]

丁香假单胞菌倾向于在种子里生长,并通过雨水溅射在植物之间扩散。潮湿凉爽的环境更利于疾病的传播,以12~25℃最适宜,但也依具体病株而有所不同。[14] 当环境不适于疾病传播时,它也可以在叶圈(phyllosphere)营腐生。[15] 某些腐生菌株可用于抑制成熟农产品的腐烂。[16]

致病机制

[编辑]

· 侵入植物体

[编辑]

浮游状态的丁香假单胞菌可以通过鞭毛菌毛的运动游向目标宿主,从伤口或天然的开放组织进入植物体内,因为它无法破坏细胞壁。例如,它与一种在叶片上打洞产卵的苍蝇(Scaptomyza flava)是合作关系。[17]

· 应对宿主的防御

[编辑]

丁香假单胞菌携带一系列 III 型分泌系统效应蛋白英语Effector (biology),这些蛋白既能致病,又能抑制宿主的免疫反应。[18] 例如 HopZ1b 可以分解大豆体内的免疫信号分子,大豆苷元。丁香假单胞菌还分泌多种植物毒素。例如在病株 PtoPgl 中发现的花冠毒素英语Coronatine[18]

· 生物膜的形成

[编辑]

丁香假单胞菌使用特定的多糖粘附于植物细胞表面,并释放群体感应信息分子探测同类的密度。一旦密度超过阈值,细菌就会改变行为模式,聚集形成生物薄膜,随即开始表达与毒素相关的基因。它们分泌高度粘稠的化合物(如多糖和DNA)来保护自身生长。[18]

· 冰核

[编辑]

丁香假单胞菌促使植物冻伤的能力超过地球上任何物质及生命体。对于没有抗冻蛋白的一般植物,冻伤发生在 −12 ~ −4 ℃,因为水在零度以下依然可以保持液态(过冷现象)。而丁香假单胞菌将冻伤温度提高到最高−1.8℃。在更低的温度(−8℃)下,丁香假单胞菌以位于细胞膜外侧的冰核活性(INA)蛋白英语Snowmaking为凝结核,通过成核现象结成大量的冰。冰冻可以破坏表皮细胞,将其保护的营养物质暴露给细菌取用。[来源请求]

参考

[编辑]
  1. ^ Anzai, Y; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International Journal of Systematic and Evolutionary Microbiology. 2000, 50 (4): 1563–89. PMID 10939664. doi:10.1099/00207713-50-4-1563. 
  2. ^ Kreig, N. R.; Holt, J. G. (编). Bergey's Manual of Systematic Biology. Baltimore: Williams and Wilkins. 1984: 141–99. 
  3. ^ Arnold, DL; Preston, GM. Pseudomonas syringae: enterprising epiphyte and stealthy parasite. Microbiology. 2019, 165 (3): 251–53. PMID 30427303. doi:10.1099/mic.0.000715可免费查阅. 
  4. ^ Scholz-Schroeder, Brenda K.; Soule, Jonathan D.; Gross, Dennis C. The sypA, sypB, and sypC Synthetase Genes Encode Twenty-Two Modules Involved in the Nonribosomal Peptide Synthesis of Syringopeptin by Pseudomonas syringae pv. syringae B301D. Molecular Plant-Microbe Interactions. 2003, 16 (4): 271–80. PMID 12744455. doi:10.1094/MPMI.2003.16.4.271可免费查阅. 
  5. ^ Maki, Leroy. Ice Nucleation Induced by Pseudomonas syringae. Applied Microbiology. Sep 1974, 28 (3): 456–59. PMC 186742可免费查阅. PMID 4371331. doi:10.1128/AEM.28.3.456-459.1974. 
  6. ^ Robbins, Jim. From Trees and Grass, Bacteria That Cause Snow and Rain. The New York Times. 24 May 2010 [2023-02-19]. (原始内容存档于2023-05-31). 
  7. ^ Bacteria-rich hailstones add to 'bioprecipitation' idea. BBC News. 2011-05-25 [2023-02-19]. (原始内容存档于2023-02-19) (英国英语). 
  8. ^ PPI home – Pseudomonas-Plant Interaction – Pseudomonas syringae Genome Resources Home Page. Cornell University & National Science Foundation & USDA ARS. 2010-09-03 [2022-03-22]. (原始内容存档于2023-03-26). 
  9. ^ Mansfield, John. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology. 2012, 13 (6): 614–29. PMC 6638704可免费查阅. PMID 22672649. doi:10.1111/j.1364-3703.2012.00804.x. 
  10. ^ Nikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity. August 2020, 12 (8): 289. doi:10.3390/d12080289可免费查阅 (英语). 
  11. ^ Nikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity. 2020-08, 12 (8) [2023-02-19]. ISSN 1424-2818. doi:10.3390/d12080289. (原始内容存档于2022-12-15) (英语). 
  12. ^ 12.0 12.1 Kennelly, Megan M.; Cazorla, Francisco M.; de Vicente, Antonio; Ramos, Cayo; Sundin, George W. Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Disease. 2007-01-01, 91 (1) [2023-02-19]. ISSN 0191-2917. doi:10.1094/PD-91-0004. (原始内容存档于2023-02-19). 
  13. ^ Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Park, Jeong Mee; Park, Hae-Jun. Effect of gamma irradiation on Pseudomonas syringae pv. tomato DC3000 - short communication. Plant Protection Science. 2016-06-30, 52 (2) [2023-02-19]. doi:10.17221/68/2015-PPS. (原始内容存档于2023-02-19) (英语). 
  14. ^ Hirano, S S; Upper, C D. Population Biology and Epidemiology of Pseudomonas Syringae. Annual Review of Phytopathology. 1990-09, 28 (1) [2023-02-19]. ISSN 0066-4286. doi:10.1146/annurev.py.28.090190.001103. (原始内容存档于2022-10-09) (英语). 
  15. ^ Hirano, Susan S.; Upper, Christen D. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae —a Pathogen, Ice Nucleus, and Epiphyte. Microbiology and Molecular Biology Reviews. 2000-09, 64 (3) [2023-02-19]. ISSN 1092-2172. PMC 99007可免费查阅. PMID 10974129. doi:10.1128/MMBR.64.3.624-653.2000. (原始内容存档于2023-02-19) (英语). 
  16. ^ Janisiewicz, W. J. Control of Storage Rots on Various Pear Cultivars with a Saprophytic Strain of Pseudomonas syringae. Plant Disease. 1992, 76 (6). ISSN 0191-2917. doi:10.1094/PD-76-0555. [失效連結]
  17. ^ Groen, Simon C.; Humphrey, Parris T.; Chevasco, Daniela; Ausubel, Frederick M.; Pierce, Naomi E.; Whiteman, Noah K. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. Journal of Insect Physiology. plant-reprogramming insects: from effector molecules to ecosystem engineering. 2016-01-01, 84. ISSN 0022-1910. PMC 4721946可免费查阅. PMID 26205072. doi:10.1016/j.jinsphys.2015.07.011 (英语). 
  18. ^ 18.0 18.1 18.2 Ichinose, Yuki; Taguchi, Fumiko; Mukaihara, Takafumi. Pathogenicity and virulence factors of Pseudomonas syringae. Journal of General Plant Pathology. 2013-09-01, 79 (5). ISSN 1610-739X. doi:10.1007/s10327-013-0452-8 (英语).