跳转到内容

施拉姆-勒夫纳演进:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
补救0个来源,并将1个来源标记为失效。) #IABot (v2.0.9.5
 
(未显示6个用户的12个中间版本)
第1行: 第1行:
在[[概率论]]中,'''施拉姆-勒夫纳演变'''(Schramm–Loewner evolution,SLE)是一个[[平面曲线]]的家族以及[[统计力学]]模的[[缩放极限]]。
{{vfd||date=2020/02/18}}
在[[概率论]]中,'''Schramm–Loewner演变(SLE)'''是一个[[平面曲线]]的家族以及[[统计力学]]模的[[缩放极限]]。


== 应用 ==
== 应用 ==
第7行: 第6行:
*[[自避行走]]
*[[自避行走]]
*[[普遍性 (物理学)]]
*[[普遍性 (物理学)]]
* Schramm–Loewner进化描述[[渗流理论|临界渗流]],临界[[易辛模型]],[[自避行走]]的[[缩放极限]]
* 施拉姆-勒夫纳进化描述[[渗流理论|临界渗流]],临界[[易辛模型]],[[自避行走]]的[[缩放极限]]
* [[统计力学]]模型
* [[统计力学]]模型
* 因为SLE有[[马尔可夫性质]],所以可以用[[伊藤积分|伊藤微积分]]来分析一下
* 因为SLE有[[马尔可夫性质]],所以可以用[[伊藤积分|伊藤微积分]]来分析一下
* [[共形场论]]
* [[共形场论]]


== Loewner演变 ==
== 勒夫纳演变 ==


* ''D'' 是[[單連通|单连通]]的[[开集]]。D是[[复数 (数学)|复杂域]],但是不等于'''C。'''
* ''D'' 是[[單連通|单连通]]的[[开集]]。D是[[复数 (数学)|复杂域]],但是不等于'''C。'''
第32行: 第31行:
:<math> f_t(\zeta(t)) = \gamma(t) \text{ 或 }\ \zeta(t) = g_t(\gamma(t)) </math>
:<math> f_t(\zeta(t)) = \gamma(t) \text{ 或 }\ \zeta(t) = g_t(\gamma(t)) </math>


== Schramm–Loewner演变 ==
== 施拉姆-勒夫纳演变 ==
SL演变是一个Loewner方程,有下面的驱动函数
SL演变是一个勒夫纳方程,有下面的驱动函数


<math>\zeta(t)=\sqrt{\kappa}B(t)</math>
<math>\zeta(t)=\sqrt{\kappa}B(t)</math>
第44行: 第43行:
* 若4&nbsp;<&nbsp;''κ''&nbsp;<&nbsp;8,γ(''t'') 与自身相交。
* 若4&nbsp;<&nbsp;''κ''&nbsp;<&nbsp;8,γ(''t'') 与自身相交。
* 若 ''κ''&nbsp;≥&nbsp;8,γ(''t'')是space-filling的。
* 若 ''κ''&nbsp;≥&nbsp;8,γ(''t'')是space-filling的。
* 若''κ''&nbsp;=&nbsp;2,曲线是Loop-erased random walk。<ref name="LERW">{{Cite journal|title=Conformal invariance of planar loop-erased random walks and uniform spanning trees|last=Lawler|first=Gregory F.|last2=Schramm|first2=Oded|journal=[[Annals of Probability|Ann. Probab.]]|issue=1B|doi=10.1214/aop/1079021469|year=2004|volume=32|pages=939–995|arxiv=math/0112234|last3=Werner|first3=Wendelin}}</ref><ref>{{Cite journal|title=Long range properties of spanning trees|last=Kenyon|first=Richard|journal=[[Journal of Mathematical Physics|J. Math. Phys.]]|issue=3|doi=10.1063/1.533190|year=2000|volume=41|pages=1338–1363|bibcode=10.1.1.39.7560}}</ref>
* 若''κ''&nbsp;=&nbsp;2,曲线是Loop-erased random walk。<ref name="LERW">{{Cite journal|title=Conformal invariance of planar loop-erased random walks and uniform spanning trees|last=Lawler|first=Gregory F.|last2=Schramm|first2=Oded|journal=[[Annals of Probability|Ann. Probab.]]|issue=1B|doi=10.1214/aop/1079021469|year=2004|volume=32|pages=939–995|arxiv=math/0112234|last3=Werner|first3=Wendelin}}</ref><ref>{{cite journal |first=Richard |last=Kenyon |title=Long range properties of spanning trees |journal=[[Journal of Mathematical Physics|J. Math. Phys.]] |volume=41 |issue=3 |pages=1338–1363 |year=2000 |doi=10.1063/1.533190 |bibcode=2000JMP....41.1338K |citeseerx=10.1.1.39.7560 }}</ref>
* ''κ''&nbsp;=&nbsp;8:[[皮亚诺曲线]]
* ''κ''&nbsp;=&nbsp;8:[[皮亚诺曲线]]
* 若 ''κ''&nbsp;=&nbsp;8/3,有人猜想这个SLE描述[[自避行走]]。
* 若 ''κ''&nbsp;=&nbsp;8/3,有人猜想这个SLE描述[[自避行走]]。
* ''κ''&nbsp;=&nbsp;3:[[易辛模型]]边界的极限
* ''κ''&nbsp;=&nbsp;3:[[易辛模型]]边界的极限
* ''κ''&nbsp;=&nbsp;4:[[高斯自由场]],{{Harvard citation text|harmonic explorer|2005}},<ref name="Harmonic explorer 2005">{{Citation|last=Schramm|first=Oded|last2=Sheffield|first2=Scott|title=Harmonic explorer and its convergence to SLE4.|jstor=3481779|year=2005|journal=Annals of Probability|volume=33|number=6|pages=2127–2148|doi=10.1214/009117905000000477|arxiv=math/0310210}}</ref>
* ''κ''&nbsp;=&nbsp;4:[[高斯自由场]],{{Harvard citation text|harmonic explorer|2005}},<ref name="Harmonic explorer 2005">{{Citation|last=Schramm|first=Oded|last2=Sheffield|first2=Scott|title=Harmonic explorer and its convergence to SLE4.|jstor=3481779|year=2005|journal=Annals of Probability|volume=33|number=6|pages=2127–2148|doi=10.1214/009117905000000477|arxiv=math/0310210}}</ref>
* ''κ''&nbsp;=&nbsp;6:[[斯坦尼斯拉夫·斯米尔诺夫|斯坦尼斯拉·斯米尔诺夫]]证明SLE<sub>6</sub> 是[[格子]]([[正三角形鑲嵌]])上的[[渗流理论|临界渗透]]的[[缩放极限]]<ref>{{Cite journal|title=Critical percolation in the plane|last=Smirnov|first=Stanislav|journal=Comptes Rendus de l'Académie des Sciences|issue=3|doi=10.1016/S0764-4442(01)01991-7|year=2001|volume=333|pages=239–244|arxiv=0909.4499|bibcode=2001CRASM.333..239S}}</ref><ref>{{Cite journal|title=Scaling relations for 2D-percolation|last=Kesten|first=Harry|journal=[[Communications in Mathematical Physics|Comm. Math. Phys.]]|issue=1|doi=10.1007/BF01205674|year=1987|volume=109|pages=109–156|bibcode=1987CMaPh.109..109K}}</ref>,计算[[临界指数]]<ref>{{Cite journal|title=Critical exponents for two-dimensional percolation|url=http://intlpress.com/site/pub/files/_fulltext/journals/mrl/2001/0008/0006/MRL-2001-0008-0006-00019853.pdf|last=Smirnov|first=Stanislav|last2=Werner|first2=Wendelin|journal=[[Mathematical Research Letters|Math. Res. Lett.]]|issue=6|doi=10.4310/mrl.2001.v8.n6.a4|year=2001|volume=8|pages=729–744|arxiv=math/0109120}}{{Dead link|date=May 2018|bot=InternetArchiveBot|fix-attempted=yes}}</ref><ref>{{Cite journal|title=Quantitative noise sensitivity and exceptional times for percolation|last=Schramm|first=Oded|last2=Steif|first2=Jeffrey E.|journal=[[Annals of Mathematics|Ann. of Math.]]|issue=2|doi=10.4007/annals.2010.171.619|year=2010|volume=171|pages=619–672|arxiv=math/0504586}}</ref><ref>{{Cite journal|title=Pivotal, cluster and interface measures for critical planar percolation|last=Garban|first=Christophe|last2=Pete|first2=Gábor|journal=[[Journal of the American Mathematical Society|J. Amer. Math. Soc.]]|issue=4|doi=10.1090/S0894-0347-2013-00772-9|year=2013|volume=26|pages=939–1024|arxiv=1008.1378|last3=Schramm|first3=Oded}}</ref>;证明[[渗流]]的共形不变性{{Harvard citation text|Smirnov|2001}}<ref name="Smirnov2001">{{Cite journal|title=Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits|last=Smirnov|first=Stanislav|journal=Comptes Rendus de l'Académie des Sciences, Série I|issue=3|doi=10.1016/S0764-4442(01)01991-7|year=2001|volume=333|pages=239–244|arxiv=0909.4499|bibcode=2001CRASM.333..239S|issn=0764-4442}}</ref>,Cardy方程
* ''κ''&nbsp;=&nbsp;6:[[斯坦尼斯拉夫·斯米尔诺夫|斯坦尼斯拉·斯米尔诺夫]]证明SLE<sub>6</sub> 是[[格子]]([[正三角形鑲嵌]])上的[[渗流理论|临界渗透]]的[[缩放极限]]<ref>{{Cite journal|title=Critical percolation in the plane|last=Smirnov|first=Stanislav|journal=Comptes Rendus de l'Académie des Sciences|issue=3|doi=10.1016/S0764-4442(01)01991-7|year=2001|volume=333|pages=239–244|arxiv=0909.4499|bibcode=2001CRASM.333..239S}}</ref><ref>{{Cite journal|title=Scaling relations for 2D-percolation|url=https://archive.org/details/sim_communications-in-mathematical-physics_1987-03_109_1/page/109|last=Kesten|first=Harry|journal=[[Communications in Mathematical Physics|Comm. Math. Phys.]]|issue=1|doi=10.1007/BF01205674|year=1987|volume=109|pages=109–156|bibcode=1987CMaPh.109..109K}}</ref>,计算[[临界指数]]<ref>{{Cite journal|title=Critical exponents for two-dimensional percolation|url=http://intlpress.com/site/pub/files/_fulltext/journals/mrl/2001/0008/0006/MRL-2001-0008-0006-00019853.pdf|last=Smirnov|first=Stanislav|last2=Werner|first2=Wendelin|journal=[[Mathematical Research Letters|Math. Res. Lett.]]|issue=6|doi=10.4310/mrl.2001.v8.n6.a4|year=2001|volume=8|pages=729–744|arxiv=math/0109120|access-date=2020-02-11|archive-date=2021-03-08|archive-url=https://web.archive.org/web/20210308065326/https://arxiv.org/abs/math/0109120|dead-url=yes}}</ref><ref>{{Cite journal|title=Quantitative noise sensitivity and exceptional times for percolation|url=https://archive.org/details/sim_annals-of-mathematics_2010-03_171_2/page/619|last=Schramm|first=Oded|last2=Steif|first2=Jeffrey E.|journal=[[Annals of Mathematics|Ann. of Math.]]|issue=2|doi=10.4007/annals.2010.171.619|year=2010|volume=171|pages=619–672|arxiv=math/0504586}}</ref><ref>{{Cite journal|title=Pivotal, cluster and interface measures for critical planar percolation|last=Garban|first=Christophe|last2=Pete|first2=Gábor|journal=[[Journal of the American Mathematical Society|J. Amer. Math. Soc.]]|issue=4|doi=10.1090/S0894-0347-2013-00772-9|year=2013|volume=26|pages=939–1024|arxiv=1008.1378|last3=Schramm|first3=Oded}}</ref>;证明[[渗流]]的共形不变性{{Harvard citation text|Smirnov|2001}}<ref name="Smirnov2001">{{Cite journal|title=Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits|last=Smirnov|first=Stanislav|journal=Comptes Rendus de l'Académie des Sciences, Série I|issue=3|doi=10.1016/S0764-4442(01)01991-7|year=2001|volume=333|pages=239–244|arxiv=0909.4499|bibcode=2001CRASM.333..239S|issn=0764-4442}}</ref>,Cardy方程
* ''κ''&nbsp;=&nbsp;8:path separating UST from dual tree
* ''κ''&nbsp;=&nbsp;8:path separating UST from dual tree


第66行: 第65行:


== 模拟 ==
== 模拟 ==
https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution
https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution{{Wayback|url=https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution |date=20200914025701 }}


== 参考文献 ==
== 参考文献 ==
第73行: 第72行:
== 阅读 ==
== 阅读 ==


* https://terrytao.wordpress.com/tag/schramm-loewner-evolution/<nowiki/>([[陶哲轩]]介绍SLE)
* https://terrytao.wordpress.com/tag/schramm-loewner-evolution/{{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }} {{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }}<nowiki/>([[陶哲轩]]介绍SLE)
* http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf<nowiki/>(Conformally invariant process in plane, by Lawler)
* http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf{{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }} {{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }}<nowiki/>(Conformally invariant process in plane, by Lawler)
* http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf<nowiki/>(SCALING LIMITS AND THE SCHRAMM-LOEWNER EVOLUTION GREGORY F. LAWLER)
* http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf{{Dead link}}<nowiki/>(SCALING LIMITS AND THE SCHRAMM-LOEWNER EVOLUTION GREGORY F. LAWLER)
{{ReflistH}}
{{ReflistH}}
*{{Citation|last=Beffara|first=Vincent|title=The dimension of the SLE curves|mr=2435854|year=2008|journal=The Annals of Probability|volume=36|number=4|pages=1421–1452|doi=10.1214/07-AOP364|arxiv=math/0211322}}
*{{Citation|last=Beffara|first=Vincent|title=The dimension of the SLE curves|mr=2435854|year=2008|journal=The Annals of Probability|volume=36|number=4|pages=1421–1452|doi=10.1214/07-AOP364|arxiv=math/0211322}}
第82行: 第81行:
*{{Springer}}
*{{Springer}}
*{{Citation|arxiv=math-ph/0312056|title=A Guide to Stochastic Loewner Evolution and its Applications|first=Wouter|last=Kager|first2=Bernard|last2=Nienhuis|journal=J. Stat. Phys.|volume=115|pages=1149–1229|year=2004|doi=10.1023/B:JOSS.0000028058.87266.be|number=5/6|bibcode=2004JSP...115.1149K}}
*{{Citation|arxiv=math-ph/0312056|title=A Guide to Stochastic Loewner Evolution and its Applications|first=Wouter|last=Kager|first2=Bernard|last2=Nienhuis|journal=J. Stat. Phys.|volume=115|pages=1149–1229|year=2004|doi=10.1023/B:JOSS.0000028058.87266.be|number=5/6|bibcode=2004JSP...115.1149K}}
*{{Citation|last=Lawler|first=Gregory F.|title=Random walks and geometry|chapter-url=http://www.math.duke.edu/~jose/esi.html|publisher=Walter de Gruyter GmbH & Co. KG, Berlin|mr=2087784|year=2004|chapter=An introduction to the stochastic Loewner evolution|pages=261–293|editor1-first=Vadim A.|editor1-last=Kaimanovich|isbn=978-3-11-017237-9|archiveurl=https://web.archive.org/web/20090918041127/http://www.math.duke.edu/~jose/esi.html|archivedate=September 18, 2009}}
*{{Citation|last=Lawler|first=Gregory F.|title=Random walks and geometry|chapter-url=http://www.math.duke.edu/~jose/esi.html|publisher=Walter de Gruyter GmbH & Co. KG, Berlin|mr=2087784|year=2004|chapter=An introduction to the stochastic Loewner evolution|pages=261–293|editor1-first=Vadim A.|editor1-last=Kaimanovich|isbn=978-3-11-017237-9|archiveurl=https://web.archive.org/web/20090918041127/http://www.math.duke.edu/~jose/esi.html|archivedate=2009-09-18|accessdate=2020-02-11|dead-url=no}}
*{{Citation|last=Lawler|first=Gregory F.|title=Conformally invariant processes in the plane|publisher=[[American Mathematical Society]]|place=Providence, R.I.|series=Mathematical Surveys and Monographs|isbn=978-0-8218-3677-4|mr=2129588|year=2005|volume=114|url=https://books.google.com/books?id=JHMzab3u6U8C}}
*{{Citation|last=Lawler|first=Gregory F.|title=Conformally invariant processes in the plane|publisher=[[American Mathematical Society]]|place=Providence, R.I.|series=Mathematical Surveys and Monographs|isbn=978-0-8218-3677-4|mr=2129588|year=2005|volume=114|url=https://books.google.com/books?id=JHMzab3u6U8C}}
*{{Cite arXiv |last1=Lawler |first1=Gregory F. |title=Schramm–Loewner Evolution |year=2007 |eprint=0712.3256 |class=math.PR |mode=cs2}}
*{{Cite arXiv}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Stochastic Loewner Evolution|url=http://www.math.cornell.edu/%7Elawler/encyclopedia.ps}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Stochastic Loewner Evolution|url=http://www.math.cornell.edu/%7Elawler/encyclopedia.ps|accessdate=2020-02-11|archive-date=2016-03-04|archive-url=https://web.archive.org/web/20160304044007/http://www.math.cornell.edu/~lawler/encyclopedia.ps|dead-url=no}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Conformal invariance and 2D statistical physics|journal=Bull. Amer. Math. Soc.|volume=46|year=2009|pages=35–54|doi=10.1090/S0273-0979-08-01229-9}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Conformal invariance and 2D statistical physics|journal=Bull. Amer. Math. Soc.|volume=46|year=2009|pages=35–54|doi=10.1090/S0273-0979-08-01229-9}}
*{{Citation|last=Lawler|url=http://www.mrlonline.org/mrl/2001-008-004/2001-008-004-001.html|doi=10.4310/mrl.2001.v8.n4.a1|pages=401–411|number=4|volume=8|journal=Mathematical Research Letters|year=2001|mr=1849257|title=The dimension of the planar Brownian frontier is 4/3|first=Gregory F.|authorlink3=Wendelin Werner|first3=Wendelin|last3=Werner|authorlink2=Oded Schramm|first2=Oded|last2=Schramm|author-link=Gregory Lawler|arxiv=math/0010165}}
*{{Citation|last=Lawler|url=http://www.mrlonline.org/mrl/2001-008-004/2001-008-004-001.html|doi=10.4310/mrl.2001.v8.n4.a1|pages=401–411|number=4|volume=8|journal=Mathematical Research Letters|year=2001|mr=1849257|title=The dimension of the planar Brownian frontier is 4/3|first=Gregory F.|authorlink3=Wendelin Werner|first3=Wendelin|last3=Werner|authorlink2=Oded Schramm|first2=Oded|last2=Schramm|author-link=Gregory Lawler|arxiv=math/0010165|accessdate=2020-02-11|archive-date=2019-09-08|archive-url=https://web.archive.org/web/20190908141240/http://www.mrlonline.org/mrl/2001-008-004/2001-008-004-001.html|dead-url=no}}
*{{Citation|first=C.|last=Loewner|author-link=Charles Loewner|title=Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I|journal=Math. Ann.|volume=89|number=1–2|year=1923|pages=103–121|jfm=49.0714.01|doi=10.1007/BF01448091|url=http://dml.cz/bitstream/handle/10338.dmlcz/125927/MathBohem_118-1993-3_7.pdf}}
*{{Citation|first=C.|last=Loewner|author-link=Charles Loewner|title=Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I|journal=Math. Ann.|volume=89|number=1–2|year=1923|pages=103–121|jfm=49.0714.01|doi=10.1007/BF01448091|url=http://dml.cz/bitstream/handle/10338.dmlcz/125927/MathBohem_118-1993-3_7.pdf|accessdate=2020-02-11|archive-date=2019-09-26|archive-url=https://web.archive.org/web/20190926155107/https://dml.cz/bitstream/handle/10338.dmlcz/125927/MathBohem_118-1993-3_7.pdf|dead-url=no}}
*{{Citation|last=Mandelbrot|first=Benoît|author-link=Benoît Mandelbrot|title=The Fractal Geometry of Nature|publisher=W. H. Freeman|isbn=978-0-7167-1186-5|year=1982|url=https://archive.org/details/fractalgeometryo00beno}}
*{{Citation|last=Mandelbrot|first=Benoît|author-link=Benoît Mandelbrot|title=The Fractal Geometry of Nature|publisher=W. H. Freeman|isbn=978-0-7167-1186-5|year=1982|url=https://archive.org/details/fractalgeometryo00beno}}
*{{Citation|title=Introduction to Schramm–Loewner evolutions|url=http://www.statslab.cam.ac.uk/~james/Lectures/sle.pdf|first=J. R.|last=Norris|author-link=James R. Norris|year=2010}}
*{{Citation|title=Introduction to Schramm–Loewner evolutions|url=http://www.statslab.cam.ac.uk/~james/Lectures/sle.pdf|first=J. R.|last=Norris|author-link=James R. Norris|year=2010|accessdate=2020-02-11|archive-date=2019-07-14|archive-url=https://web.archive.org/web/20190714025509/http://www.statslab.cam.ac.uk/~james/Lectures/sle.pdf|dead-url=no}}
*{{Citation|last=Pommerenke|first=Christian|author-link=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series=Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher=Vandenhoeck & Ruprecht|year=1975}} (Chapter 6 treats the classical theory of Loewner's equation)
*{{Citation|last=Pommerenke|first=Christian|author-link=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series=Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher=Vandenhoeck & Ruprecht|year=1975}} (Chapter 6 treats the classical theory of Loewner's equation)
*{{Citation|last=Schramm|first=Oded|author-link=Oded Schramm|title=Scaling limits of loop-erased random walks and uniform spanning trees|arxiv=math.PR/9904022|mr=1776084|year=2000|journal=Israel Journal of Mathematics|volume=118|pages=221–288|doi=10.1007/BF02803524}} Schramm's original paper, introducing SLE
*{{Citation|last=Schramm|first=Oded|author-link=Oded Schramm|title=Scaling limits of loop-erased random walks and uniform spanning trees|arxiv=math.PR/9904022|mr=1776084|year=2000|journal=Israel Journal of Mathematics|volume=118|pages=221–288|doi=10.1007/BF02803524}} Schramm's original paper, introducing SLE

2024年9月2日 (一) 00:49的最新版本

概率论中,施拉姆-勒夫纳演变(Schramm–Loewner evolution,SLE)是一个平面曲线的家族以及统计力学模型的缩放极限

应用

[编辑]

勒夫纳演变

[编辑]
  • D单连通开集。D是复杂域,但是不等于C。
  • γ 是D中的一条曲线。γD 的边界开始。
  • 因为是单连通的,它通过共形映射等于D(黎曼映射理论)。
  • 同构
  • 反函數
  • t = 0,f0(z) = zg0(z) = z。
  • ζ(t)是驱动函数(driving function),接受D边界上的值

根据Loewner (1923,p. 121),Loewner方程英语Loewner differential equation

的关系是

施拉姆-勒夫纳演变

[编辑]

SL演变是一个勒夫纳方程,有下面的驱动函数

其中 B(t) 是D边界上的布朗运动

例如

[编辑]

属性

[编辑]

若SLE描述共形场论,central charge c等于

Beffara (2008) 表明了SLE的豪斯多夫维数是min(2, 1 + κ/8)。

Lawler, Schramm & Werner (2001) 用SLE6 证明Mandelbrot (1982)的猜想:平面布朗运动边界的分形维数是4/3。

Rohde和Schramm表明了曲线的分形维数

模拟

[编辑]

https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution(页面存档备份,存于互联网档案馆

参考文献

[编辑]
  1. ^ Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 2004, 32 (1B): 939–995. arXiv:math/0112234可免费查阅. doi:10.1214/aop/1079021469. 
  2. ^ Kenyon, Richard. Long range properties of spanning trees. J. Math. Phys. 2000, 41 (3): 1338–1363. Bibcode:2000JMP....41.1338K. CiteSeerX 10.1.1.39.7560可免费查阅. doi:10.1063/1.533190. 
  3. ^ Schramm, Oded; Sheffield, Scott, Harmonic explorer and its convergence to SLE4., Annals of Probability, 2005, 33 (6): 2127–2148, JSTOR 3481779, arXiv:math/0310210可免费查阅, doi:10.1214/009117905000000477 
  4. ^ Smirnov, Stanislav. Critical percolation in the plane. Comptes Rendus de l'Académie des Sciences. 2001, 333 (3): 239–244. Bibcode:2001CRASM.333..239S. arXiv:0909.4499可免费查阅. doi:10.1016/S0764-4442(01)01991-7. 
  5. ^ Kesten, Harry. Scaling relations for 2D-percolation. Comm. Math. Phys. 1987, 109 (1): 109–156. Bibcode:1987CMaPh.109..109K. doi:10.1007/BF01205674. 
  6. ^ Smirnov, Stanislav; Werner, Wendelin. Critical exponents for two-dimensional percolation. Math. Res. Lett. 2001, 8 (6): 729–744 [2020-02-11]. arXiv:math/0109120可免费查阅. doi:10.4310/mrl.2001.v8.n6.a4. (原始内容 (PDF)存档于2021-03-08). 
  7. ^ Schramm, Oded; Steif, Jeffrey E. Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. 2010, 171 (2): 619–672. arXiv:math/0504586可免费查阅. doi:10.4007/annals.2010.171.619. 
  8. ^ Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster and interface measures for critical planar percolation. J. Amer. Math. Soc. 2013, 26 (4): 939–1024. arXiv:1008.1378可免费查阅. doi:10.1090/S0894-0347-2013-00772-9. 
  9. ^ Smirnov, Stanislav. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. Comptes Rendus de l'Académie des Sciences, Série I. 2001, 333 (3): 239–244. Bibcode:2001CRASM.333..239S. ISSN 0764-4442. arXiv:0909.4499可免费查阅. doi:10.1016/S0764-4442(01)01991-7. 

阅读

[编辑]