跳转到内容

施拉姆-勒夫纳演进:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
阅读:​ 用英語維基百科對應的來源進行修復
InternetArchiveBot留言 | 贡献
补救0个来源,并将1个来源标记为失效。) #IABot (v2.0.9.5
 
(未显示2个用户的2个中间版本)
第1行: 第1行:
在[[概率论]]中,'''施拉姆-勒夫纳演变'''(Schramm–Loewner evolution,SLE)是一个[[平面曲线]]的家族以及[[统计力学]]模的[[缩放极限]]。
在[[概率论]]中,'''施拉姆-勒夫纳演变'''(Schramm–Loewner evolution,SLE)是一个[[平面曲线]]的家族以及[[统计力学]]模的[[缩放极限]]。


== 应用 ==
== 应用 ==
第43行: 第43行:
* 若4&nbsp;<&nbsp;''κ''&nbsp;<&nbsp;8,γ(''t'') 与自身相交。
* 若4&nbsp;<&nbsp;''κ''&nbsp;<&nbsp;8,γ(''t'') 与自身相交。
* 若 ''κ''&nbsp;≥&nbsp;8,γ(''t'')是space-filling的。
* 若 ''κ''&nbsp;≥&nbsp;8,γ(''t'')是space-filling的。
* 若''κ''&nbsp;=&nbsp;2,曲线是Loop-erased random walk。<ref name="LERW">{{Cite journal|title=Conformal invariance of planar loop-erased random walks and uniform spanning trees|last=Lawler|first=Gregory F.|last2=Schramm|first2=Oded|journal=[[Annals of Probability|Ann. Probab.]]|issue=1B|doi=10.1214/aop/1079021469|year=2004|volume=32|pages=939–995|arxiv=math/0112234|last3=Werner|first3=Wendelin}}</ref><ref>{{Cite journal|title=Long range properties of spanning trees|last=Kenyon|first=Richard|journal=[[Journal of Mathematical Physics|J. Math. Phys.]]|issue=3|doi=10.1063/1.533190|year=2000|volume=41|pages=1338–1363|bibcode=10.1.1.39.7560}}</ref>
* 若''κ''&nbsp;=&nbsp;2,曲线是Loop-erased random walk。<ref name="LERW">{{Cite journal|title=Conformal invariance of planar loop-erased random walks and uniform spanning trees|last=Lawler|first=Gregory F.|last2=Schramm|first2=Oded|journal=[[Annals of Probability|Ann. Probab.]]|issue=1B|doi=10.1214/aop/1079021469|year=2004|volume=32|pages=939–995|arxiv=math/0112234|last3=Werner|first3=Wendelin}}</ref><ref>{{cite journal |first=Richard |last=Kenyon |title=Long range properties of spanning trees |journal=[[Journal of Mathematical Physics|J. Math. Phys.]] |volume=41 |issue=3 |pages=1338–1363 |year=2000 |doi=10.1063/1.533190 |bibcode=2000JMP....41.1338K |citeseerx=10.1.1.39.7560 }}</ref>
* ''κ''&nbsp;=&nbsp;8:[[皮亚诺曲线]]
* ''κ''&nbsp;=&nbsp;8:[[皮亚诺曲线]]
* 若 ''κ''&nbsp;=&nbsp;8/3,有人猜想这个SLE描述[[自避行走]]。
* 若 ''κ''&nbsp;=&nbsp;8/3,有人猜想这个SLE描述[[自避行走]]。
第74行: 第74行:
* https://terrytao.wordpress.com/tag/schramm-loewner-evolution/{{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }} {{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }}<nowiki/>([[陶哲轩]]介绍SLE)
* https://terrytao.wordpress.com/tag/schramm-loewner-evolution/{{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }} {{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }}<nowiki/>([[陶哲轩]]介绍SLE)
* http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf{{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }} {{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }}<nowiki/>(Conformally invariant process in plane, by Lawler)
* http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf{{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }} {{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }}<nowiki/>(Conformally invariant process in plane, by Lawler)
* http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf<nowiki/>(SCALING LIMITS AND THE SCHRAMM-LOEWNER EVOLUTION GREGORY F. LAWLER)
* http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf{{Dead link}}<nowiki/>(SCALING LIMITS AND THE SCHRAMM-LOEWNER EVOLUTION GREGORY F. LAWLER)
{{ReflistH}}
{{ReflistH}}
*{{Citation|last=Beffara|first=Vincent|title=The dimension of the SLE curves|mr=2435854|year=2008|journal=The Annals of Probability|volume=36|number=4|pages=1421–1452|doi=10.1214/07-AOP364|arxiv=math/0211322}}
*{{Citation|last=Beffara|first=Vincent|title=The dimension of the SLE curves|mr=2435854|year=2008|journal=The Annals of Probability|volume=36|number=4|pages=1421–1452|doi=10.1214/07-AOP364|arxiv=math/0211322}}

2024年9月2日 (一) 00:49的最新版本

概率论中,施拉姆-勒夫纳演变(Schramm–Loewner evolution,SLE)是一个平面曲线的家族以及统计力学模型的缩放极限

应用

[编辑]

勒夫纳演变

[编辑]
  • D单连通开集。D是复杂域,但是不等于C。
  • γ 是D中的一条曲线。γD 的边界开始。
  • 因为是单连通的,它通过共形映射等于D(黎曼映射理论)。
  • 同构
  • 反函數
  • t = 0,f0(z) = zg0(z) = z。
  • ζ(t)是驱动函数(driving function),接受D边界上的值

根据Loewner (1923,p. 121),Loewner方程英语Loewner differential equation

的关系是

施拉姆-勒夫纳演变

[编辑]

SL演变是一个勒夫纳方程,有下面的驱动函数

其中 B(t) 是D边界上的布朗运动

例如

[编辑]

属性

[编辑]

若SLE描述共形场论,central charge c等于

Beffara (2008) 表明了SLE的豪斯多夫维数是min(2, 1 + κ/8)。

Lawler, Schramm & Werner (2001) 用SLE6 证明Mandelbrot (1982)的猜想:平面布朗运动边界的分形维数是4/3。

Rohde和Schramm表明了曲线的分形维数

模拟

[编辑]

https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution(页面存档备份,存于互联网档案馆

参考文献

[编辑]
  1. ^ Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 2004, 32 (1B): 939–995. arXiv:math/0112234可免费查阅. doi:10.1214/aop/1079021469. 
  2. ^ Kenyon, Richard. Long range properties of spanning trees. J. Math. Phys. 2000, 41 (3): 1338–1363. Bibcode:2000JMP....41.1338K. CiteSeerX 10.1.1.39.7560可免费查阅. doi:10.1063/1.533190. 
  3. ^ Schramm, Oded; Sheffield, Scott, Harmonic explorer and its convergence to SLE4., Annals of Probability, 2005, 33 (6): 2127–2148, JSTOR 3481779, arXiv:math/0310210可免费查阅, doi:10.1214/009117905000000477 
  4. ^ Smirnov, Stanislav. Critical percolation in the plane. Comptes Rendus de l'Académie des Sciences. 2001, 333 (3): 239–244. Bibcode:2001CRASM.333..239S. arXiv:0909.4499可免费查阅. doi:10.1016/S0764-4442(01)01991-7. 
  5. ^ Kesten, Harry. Scaling relations for 2D-percolation. Comm. Math. Phys. 1987, 109 (1): 109–156. Bibcode:1987CMaPh.109..109K. doi:10.1007/BF01205674. 
  6. ^ Smirnov, Stanislav; Werner, Wendelin. Critical exponents for two-dimensional percolation. Math. Res. Lett. 2001, 8 (6): 729–744 [2020-02-11]. arXiv:math/0109120可免费查阅. doi:10.4310/mrl.2001.v8.n6.a4. (原始内容 (PDF)存档于2021-03-08). 
  7. ^ Schramm, Oded; Steif, Jeffrey E. Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. 2010, 171 (2): 619–672. arXiv:math/0504586可免费查阅. doi:10.4007/annals.2010.171.619. 
  8. ^ Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster and interface measures for critical planar percolation. J. Amer. Math. Soc. 2013, 26 (4): 939–1024. arXiv:1008.1378可免费查阅. doi:10.1090/S0894-0347-2013-00772-9. 
  9. ^ Smirnov, Stanislav. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. Comptes Rendus de l'Académie des Sciences, Série I. 2001, 333 (3): 239–244. Bibcode:2001CRASM.333..239S. ISSN 0764-4442. arXiv:0909.4499可免费查阅. doi:10.1016/S0764-4442(01)01991-7. 

阅读

[编辑]