环 (代数):修订间差异
KALENIMORU(留言 | 贡献) 大幅度重寫整個條目。「相關概念」的部份內容減少、更加專注在「是環的東西」、增加文獻。 |
|||
(未显示5个用户的9个中间版本) | |||
第1行: | 第1行: | ||
{{No footnotes|time=2024-05-21T05:17:30+00:00}} |
|||
{{環論}} |
{{環論}} |
||
{{Algebraic structures}} |
{{Algebraic structures}} |
||
'''環'''(英文:Ring)是一種帶有兩個[[二元運算]](抽象化的「加法」和「乘法」)、並且符合特定運算規則的[[集合 (数学)|集合]]。它抽象化了諸如[[整數]]、[[有理數]]、[[實數]]、[[複數]]、[[多項式]]、[[矩陣]]、[[函数|函數]]、[[算子]]等等的代數結構。它是[[環論]]的主要研究對象,並且是構成各種[[抽象代数|抽象代數]]理論的重要基本概念。 |
'''環'''(英文:Ring)是一種帶有兩個[[二元運算]](抽象化的「加法」和「乘法」)、並且符合特定運算規則的[[集合 (数学)|集合]]。它抽象化了諸如[[整數]]、[[有理數]]、[[實數]]、[[複數 (數學)|複數]]、[[多項式]]、[[矩陣]]、[[函数|函數]]、[[算子]]等等的代數結構。它是[[環論]]的主要研究對象,並且是構成各種[[抽象代数|抽象代數]]理論的重要基本概念。 |
||
環的具體定義並沒有完全統一。不同研究方向的學者對於環是否要有乘法[[單位元]]有不同見解,在部份情況下甚至不要求乘法有[[結合律]]。然而除非明確聲明,否則本條目所稱的「環」是指有乘法[[單位元]]、乘法有[[結合律]]的環。 |
環的具體定義並沒有完全統一。不同研究方向的學者對於環是否要有乘法[[單位元]]有不同見解,在部份情況下甚至不要求乘法有[[結合律]]。然而除非明確聲明,否則本條目所稱的「環」是指有乘法[[單位元]]、乘法有[[結合律]]的環。 |
||
第29行: | 第30行: | ||
* 整係數[[多項式|多項式環]] <math>\mathbb{Z}[x]</math> 、有理係數[[多項式|多項式環]] <math>\mathbb{Q}[x]</math> ,實係數[[多項式|多項式環]] <math>\mathbb{R}[x]</math> 、複係數[[多項式|多項式環]] <math>\mathbb{C}[x]</math> ,連同多項式加法和乘法,構成一個環。它們的加法單位元也是 <math>0</math> ,乘法單位元也是 <math>1</math> 。更一般地,可以考慮任何環 <math>R</math> 的多項式環 <math>R[x]</math> 。 |
* 整係數[[多項式|多項式環]] <math>\mathbb{Z}[x]</math> 、有理係數[[多項式|多項式環]] <math>\mathbb{Q}[x]</math> ,實係數[[多項式|多項式環]] <math>\mathbb{R}[x]</math> 、複係數[[多項式|多項式環]] <math>\mathbb{C}[x]</math> ,連同多項式加法和乘法,構成一個環。它們的加法單位元也是 <math>0</math> ,乘法單位元也是 <math>1</math> 。更一般地,可以考慮任何環 <math>R</math> 的多項式環 <math>R[x]</math> 。 |
||
* 整係數[[有理函數]] <math>\mathbb{Z}(x)</math> 、有理係數[[多項式|有理函數]] <math>\mathbb{Q}(x)</math> ,實係數[[有理函數]] <math>\mathbb{R}(x)</math> 、複係數[[多項式|有理函數]] <math>\mathbb{C}(x)</math> ,連同有理函數的加法和乘法,構成一個環。它們的加法單位元依然是 <math>0</math> ,乘法單位元依然是 <math>1</math> 。更一般地,可以考慮任何環 <math>R</math> 的有理函數環 <math>R(x)</math> ;而「建構分式」的操作還是「[[分式體]]」以及更一般的「[[環的局部化|局部化]]」這些概念的起源。 |
* 整係數[[有理函數]] <math>\mathbb{Z}(x)</math> 、有理係數[[多項式|有理函數]] <math>\mathbb{Q}(x)</math> ,實係數[[有理函數]] <math>\mathbb{R}(x)</math> 、複係數[[多項式|有理函數]] <math>\mathbb{C}(x)</math> ,連同有理函數的加法和乘法,構成一個環。它們的加法單位元依然是 <math>0</math> ,乘法單位元依然是 <math>1</math> 。更一般地,可以考慮任何環 <math>R</math> 的有理函數環 <math>R(x)</math> ;而「建構分式」的操作還是「[[分式體]]」以及更一般的「[[環的局部化|局部化]]」這些概念的起源。 |
||
* 大小為 <math>n \times n</math> 的 |
* 大小為 <math>n \times n</math> 的整係數[[矩陣]] <math>\mathbf{M}_{n}(\mathbb{Z})</math> 、有理係數[[矩陣]] <math>\mathbf{M}_{n}(\mathbb{Q})</math> 、實係數[[矩陣]] <math>\mathbf{M}_{n}(\mathbb{R})</math> 、或複係數[[矩陣]] <math>\mathbf{M}_{n}(\mathbb{C})</math>,連同矩陣加法和矩陣乘法,構成一個環。它們的加法單位元是零矩陣 :<math display="block">\mathbf{0}_{n} := |
||
\begin{bmatrix} |
|||
1 & 0 & \dots & 0 \\ |
|||
0 & 1 & \dots & 0 \\ |
|||
\vdots & \vdots & \ddots & \vdots \\ |
|||
0 & 0 & \dots & 1 \\ |
|||
\end{bmatrix}_{n \times n}</math>乘法單位元則是零矩陣 :<math display="block">\mathbf{0}_{n} := |
|||
\begin{bmatrix} |
\begin{bmatrix} |
||
0 & 0 & \dots & 0 \\ |
0 & 0 & \dots & 0 \\ |
||
第41行: | 第36行: | ||
\vdots & \vdots & \ddots & \vdots \\ |
\vdots & \vdots & \ddots & \vdots \\ |
||
0 & 0 & \dots & 0 \\ |
0 & 0 & \dots & 0 \\ |
||
\end{bmatrix}_{n \times n}</math>乘法單位元則是單位矩陣 :<math display="block">\mathrm{I}_{n} := |
|||
\begin{bmatrix} |
|||
1 & 0 & \dots & 0 \\ |
|||
0 & 1 & \dots & 0 \\ |
|||
\vdots & \vdots & \ddots & \vdots \\ |
|||
0 & 0 & \dots & 1 \\ |
|||
\end{bmatrix}_{n \times n}</math>同樣的,可以考慮任何環 <math>R</math> 的矩陣環 <math>\mathbf{M}_{n}(R)</math> 。矩陣環也是典型的非交換環。 |
\end{bmatrix}_{n \times n}</math>同樣的,可以考慮任何環 <math>R</math> 的矩陣環 <math>\mathbf{M}_{n}(R)</math> 。矩陣環也是典型的非交換環。 |
||
* 如果集合 <math>R</math> 只有一個元素,那 <math>R</math> 只可能定義出唯一的一種環結構——'''{{Link-en|零環|Zero ring}}'''{{NoteTag|或稱'''平凡環'''( Trivial ring )}}( Zero ring )。 |
* 如果集合 <math>R</math> 只有一個元素,那 <math>R</math> 只可能定義出唯一的一種環結構——'''{{Link-en|零環|Zero ring}}'''{{NoteTag|或稱'''平凡環'''( Trivial ring )}}( Zero ring )。 |
||
第56行: | 第57行: | ||
** <math>n(a+b) = na + nb</math> |
** <math>n(a+b) = na + nb</math> |
||
** <math>(n+m)a = na + ma</math> |
** <math>(n+m)a = na + ma</math> |
||
: 而如果把多次相加改成多次相乘,那麼 |
: 而類似地如果把多次相加改成多次相乘,那麼可以{{NoteTag|這邊暫定 <math>a</math> 有成法反元素。如果沒有乘法反元素,那麼有關負數次方的結果不一定成立。}}定義冪運算:<math display="block">a^n := \underbrace{a \times a \times \cdots a}_{n \text{ 次}} \qquad a^{-n} := \underbrace{a^{-1} \times a^{-1} \times \cdots a^{-1}}_{n \text{ 次}} \qquad a^{0} := 1_R</math> |
||
* 二項式展開——如果 <math>ab = ba</math> ,那麼它們總和的次方可以這樣計算:<math display="block">(a + b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \cdots + \binom{n}{n-2}a^{2}b^{n-2} + \binom{n}{n-1}ab^{n-1} + b^n = \sum_{i+j = n}\frac{n!}{(i!)(j!)}a^ib^j</math>這可以推廣到多個元素 <math>a_1,a_2,\dots,a_m</math> 總和的次方'''——'''如果任兩個元素的 <math>a_i</math> 和 <math>a_j</math> 的乘法都可以交換(即 <math>a_ia_j = a_ja_i</math> ),那麼:<math display="block">(a_1 + a_2 + \cdots + a_m)^n = \sum_{i_1 + i_2 + \cdots + i_m = n}\frac{n!}{(i_1!)(i_2!)\cdots(i_n!)}a_{1}^{i_1}a_{2}^{i_2} \cdots a_{m}^{i_m}</math> |
* 二項式展開——如果 <math>ab = ba</math> ,那麼它們總和的次方可以這樣計算:<math display="block">(a + b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \cdots + \binom{n}{n-2}a^{2}b^{n-2} + \binom{n}{n-1}ab^{n-1} + b^n = \sum_{i+j = n}\frac{n!}{(i!)(j!)}a^ib^j</math>這可以推廣到多個元素 <math>a_1,a_2,\dots,a_m</math> 總和的次方'''——'''如果任兩個元素的 <math>a_i</math> 和 <math>a_j</math> 的乘法都可以交換(即 <math>a_ia_j = a_ja_i</math> ),那麼:<math display="block">(a_1 + a_2 + \cdots + a_m)^n = \sum_{i_1 + i_2 + \cdots + i_m = n}\frac{n!}{(i_1!)(i_2!)\cdots(i_n!)}a_{1}^{i_1}a_{2}^{i_2} \cdots a_{m}^{i_m}</math> |
||
第72行: | 第73行: | ||
=== 環同態、核、像 === |
=== 環同態、核、像 === |
||
{{Main|环同态}} |
{{Main|环同态}} |
||
在環論中,環同態 |
在環論中,環同態描述了環與環之間的關係。一個從環 <math>R</math> 送往環 <math>S</math> 的'''環同態'''( Ring homomorphism )<math>f : R \to S</math> 簡單來說是一種「維持環結構{{NoteTag|另一種說法是不摧毀環結構。因為環同態確實會改變環的結構。}}」的映射;而具體來說,<math>f</math> 要具有以下三個性質: |
||
* 維持加法的結構——對所有的 <math>a, b \in R</math> ,都有:<math display="block">f(a+b) = f(a)f(b)</math> |
* '''維持加法的結構'''——對所有的 <math>a, b \in R</math> ,都有:<math display="block">f(a+b) = f(a)+f(b)</math> |
||
* 維持乘法的結構——對所有的 <math>a, b \in R</math> ,都有:<math display="block">f(ab) = f(a)(b)</math> |
* '''維持乘法的結構'''——對所有的 <math>a, b \in R</math> ,都有:<math display="block">f(ab) = f(a)(b)</math> |
||
* 維持單位元的結構——也就是:<math display="block">f(1_{R}) = 1_{S}</math> |
* '''維持單位元的結構'''——也就是:<math display="block">f(1_{R}) = 1_{S}</math> |
||
對一個環同態 <math>f</math> 來說,有以下兩個密切相關的概念: |
|||
* '''核'''( Kernel )——送到零元素的那些元素:<math display="block">\mathrm{Ker}(f) := f^{-1}(0_{S}) = \{ a \in R \mid f(a) = 0_{S} \} \subseteq R</math> |
* '''核'''( Kernel )——送到零元素的那些元素:<math display="block">\mathrm{Ker}(f) := f^{-1}(0_{S}) = \{ a \in R \mid f(a) = 0_{S} \} \subseteq R</math> |
||
* '''像'''( Image )——把元素都送過去後的結果:<math display="block">\mathrm{Im}(f) := f(R) = \{ f(a) \in S \mid a \in R \} \subseteq S</math> |
* '''像'''( Image )——把元素都送過去後的結果:<math display="block">\mathrm{Im}(f) := f(R) = \{ f(a) \in S \mid a \in R \} \subseteq S</math> |
||
第179行: | 第180行: | ||
\vdots & \vdots & \ddots & \vdots \\ |
\vdots & \vdots & \ddots & \vdots \\ |
||
\sum_{i=1}^{n}a_{n,i}b_{i,1} & \sum_{i=1}^{n}a_{n,i}b_{i,2} & \dots & \sum_{i=1}^{n}a_{n,i}b_{i,n} \\ |
\sum_{i=1}^{n}a_{n,i}b_{i,1} & \sum_{i=1}^{n}a_{n,i}b_{i,2} & \dots & \sum_{i=1}^{n}a_{n,i}b_{i,n} \\ |
||
\end{bmatrix}_{n \times n} </math>那麼 <math>\mathbf{M}_{n}(R) </math> 在這樣的運算規則下,構成一個環。它的加法單位元是 |
\end{bmatrix}_{n \times n} </math>那麼 <math>\mathbf{M}_{n}(R) </math> 在這樣的運算規則下,構成一個環。它的加法單位元是零矩陣 :<math display="block">\mathbf{0}_{n} := |
||
\begin{bmatrix} |
|||
1_{R} & 0_{R} & \dots & 0_{R} \\ |
|||
0_{R} & 1_{R} & \dots & 0_{R} \\ |
|||
\vdots & \vdots & \ddots & \vdots \\ |
|||
0_{R} & 0_{R} & \dots & 1_{R} \\ |
|||
\end{bmatrix}_{n \times n}</math>乘法單位元則是零矩陣 :<math display="block">\mathbf{0}_{n} := |
|||
\begin{bmatrix} |
\begin{bmatrix} |
||
0_{R} & 0_{R} & \dots & 0_{R} \\ |
0_{R} & 0_{R} & \dots & 0_{R} \\ |
||
第191行: | 第186行: | ||
\vdots & \vdots & \ddots & \vdots \\ |
\vdots & \vdots & \ddots & \vdots \\ |
||
0_{R} & 0_{R} & \dots & 0_{R} \\ |
0_{R} & 0_{R} & \dots & 0_{R} \\ |
||
\end{bmatrix}_{n \times n}</math>乘法單位元則是單位矩陣 :<math display="block">\mathrm{I}_{n} := |
|||
\begin{bmatrix} |
|||
1_{R} & 0_{R} & \dots & 0_{R} \\ |
|||
0_{R} & 1_{R} & \dots & 0_{R} \\ |
|||
\vdots & \vdots & \ddots & \vdots \\ |
|||
0_{R} & 0_{R} & \dots & 1_{R} \\ |
|||
\end{bmatrix}_{n \times n}</math>同樣的,可以考慮任何環 <math>R</math> 的矩陣環 <math>\mathbf{M}_{n}(R)</math> 。矩陣環也是典型的非交換環。 |
\end{bmatrix}_{n \times n}</math>同樣的,可以考慮任何環 <math>R</math> 的矩陣環 <math>\mathbf{M}_{n}(R)</math> 。矩陣環也是典型的非交換環。 |
||
第218行: | 第219行: | ||
==引用== |
==引用== |
||
{{ |
{{reflist}} |
||
== 參考文獻 == |
== 參考文獻 == |
||
* {{cite book|author=康明昌|title=《近世代數》|publisher=聯經| |
* {{cite book | author = 康明昌 | ref = harv | title = 《近世代數》 | year = 2000 | publisher = 聯經 | isbn = 9789570821550 | language = zh | url = https://www.linkingbooks.com.tw/LNB/book/Book.aspx?ID=33015-03&vs=pc | access-date = 2024-05-21 | archive-date = 2024-05-21 | archive-url = https://web.archive.org/web/20240521142927/https://www.linkingbooks.com.tw/LNB/book/Book.aspx?ID=33015-03&vs=pc | dead-url = no }} |
||
* {{Cite journal |
|||
|last=Noether |first=Emmy | ref = harv |
|||
|title=Idealtheorie in Ringbereichen |date=1921 |
|||
|journal=Mathematische Annalen |url=http://link.springer.com/10.1007/BF01464225|language=de |
|||
|volume=83 |issue=1-2 |doi=10.1007/BF01464225 |issn=0025-5831| authorlink=埃米·諾特 |
|||
}} |
|||
* {{Cite book |
|||
|last=Kemper|first=Gregor| ref = harv |
|||
|title=A Course in Commutative Algebra|date=2011|chapter=Hilbert's Nullstellensatz |
|||
|publisher=Springer Berlin Heidelberg|url=https://link.springer.com/10.1007/978-3-642-03545-6_2|isbn=978-3-642-03544-9|language=en |
|||
|location=Berlin, Heidelberg|volume=256|doi=10.1007/978-3-642-03545-6_2 |
|||
}} |
|||
=== 要求「環」要有乘法單位元的 |
=== 要求「環」要有乘法單位元的教科書 === |
||
* {{cite book |
|||
* {{cite book|author=Benson Farb|title=''Noncommutative Algebra''|publisher=Springer|year=1993|isbn=978-1-4612-0889-1|language=en|last2=R. Keith Dennis}} |
|||
| last = Artin | first = Michael | ref = harv |
|||
* {{cite book|author=David Eisenbud|title='' Commutative Algebra: with a View Toward Algebraic Geometry''|publisher=Springer|year=1995|isbn=978-1-4612-5350-1|language=en}} |
|||
| title=''Algebra'' | url = https://archive.org/details/algebra0000arti_e8q5_2edi | year = 2011 |
|||
* {{cite book|author=Michael Artin|title=''Algebra''|publisher=Pearson Education|year=2023|isbn=9780137980994|edition=第二版|authorlink=麥可·阿廷|language=en}} |
|||
| publisher=Pearson Education, Prentice Hall | isbn=978-0-13-241377-0 | language=en |
|||
* {{cite book|author=Michael F. Atiyah|title=''Introduction To Commutative Algebra''|publisher=Westview Press|year=1994|isbn=978-0201407518|language=en|last2=I. G. MacDonald}} |
|||
| authorlink=麥可·阿廷 | location=Boston, Mass. Munich | edition=2ed |
|||
* {{cite book|author=Nathan Jacobson|title=''Basic Algebra''|publisher=Dover|year=2009|isbn=978-0486471891|edition=第二版|language=en}} |
|||
}} |
|||
* {{cite book|author=P. M. Cohn|title=''Introduction to Ring Theory''|publisher=Springer|year=2000|isbn=978-1-4471-0475-9|language=en}} |
|||
* {{cite book|author=Serge Lang|title=''Algebra''|publisher=Springer|year=2002|isbn=978-0-387-95385-4|edition=第三版|language=en}} |
|||
* {{cite book|author=Serge Lang|title=''Undergraduate Algebra''|publisher=Springer|year=2005|isbn=978-0-387-27475-1|edition=第三版|language=en}} |
|||
* {{cite book |
|||
=== 不要求「環」要有乘法單位元的文獻 === |
|||
| last = Atiyah | first = Michael Francis | last2 = MacDonald | first2 = Ian Grant | ref = harv |
|||
| title = ''Introduction To Commutative Algebra'' | year = 1994 |
|||
| publisher = Westview Press | isbn = 978-0201407518 | language = en |
|||
| authorlink = 迈克尔·阿蒂亚 | authorlink2 = :en:Ian G. Macdonald |
|||
}} |
|||
* {{Cite book |
|||
|last=Bourbaki|first = Nicolas| ref = harv |
|||
|date=2007|title=Algèbre: Chapitres 1 à 3 |
|||
|publisher=Springer Berlin Heidelberg|url=http://link.springer.com/10.1007/978-3-540-33850-5|isbn=978-3-540-33849-9|language=fr |
|||
|authorlink=尼古拉·布尔巴基|doi=10.1007/978-3-540-33850-5|location=Berlin, Heidelberg |
|||
}} |
|||
* {{cite book |
|||
| last = Cohn | first = Paul Moritz | ref = harv |
|||
| title = ''Introduction to Ring Theory'' | year = 2000 |
|||
| publisher = Springer | isbn = 978-1-4471-0475-9 | language = en | url = https://doi.org/10.1007/978-1-4471-0475-9 |
|||
| authorlink = 保羅·孔恩 |
|||
}} |
|||
* {{cite book |
|||
| last = Eisenbud | first = David | ref = harv |
|||
| title = ''Commutative Algebra: with a View Toward Algebraic Geometry'' | year = 1995 |
|||
| publisher = Springer | isbn = 978-1-4612-5350-1 | language = en | url = https://doi.org/10.1007/978-1-4612-5350-1 |
|||
| authorlink = :en:David Eisenbud |
|||
}} |
|||
* {{cite book |
|||
| last = Farb | first = Benson | last2 = Dennis | first2 = R. Keith | ref = harv |
|||
| title = ''Noncommutative Algebra'' | year = 1993 |
|||
| publisher = Springer | isbn = 978-0-387-94057-1 | language = en | url = https://doi.org/10.1007/978-1-4612-0889-1 |
|||
| authorlink=:en:Benson Farb |
|||
}} |
|||
* {{cite book | last = Jacobson | first = Nathan | ref = harv | title = ''Basic Algebra I'' | year = 2009 | publisher = Dover | isbn = 978-0486471891 | language = en | url = https://store.doverpublications.com/products/9780486471891 | edition = 第二版 | authorlink = 納森·雅各布森 | access-date = 2024-05-21 | archive-date = 2024-05-21 | archive-url = https://web.archive.org/web/20240521133934/https://store.doverpublications.com/products/9780486471891 | dead-url = no }} |
|||
* {{cite book |
|||
| last = Lang | first = Serge | ref = harv |
|||
| title = ''Algebra'' | year = 2002 |
|||
| publisher = Springer | isbn = 978-0-387-95385-4 | language = en | url = https://doi.org/10.1007/978-1-4613-0041-0 |
|||
| authorlink = 塞爾日·蘭 | edition = 第三版 |
|||
}} |
|||
* {{cite book |
|||
| last = Lang | first = Serge | ref = harv |
|||
| title = ''Undergraduate Algebra'' | year = 2005 |
|||
| publisher = Springer | isbn = 978-0-387-27475-1 | language = en | url = https://doi.org/10.1007/0-387-27475-8 |
|||
| authorlink = 塞爾日·蘭 | edition = 第三版 |
|||
}} |
|||
=== 不要求「環」要有乘法單位元的教科書 === |
|||
* {{cite book|author=D. A. R. Wallace|title=''Groups, Rings and Fields''|publisher=Springer|year=1998|isbn=978-1-4471-0425-4|language=en}} |
|||
* {{cite book |
|||
* {{cite book|author=David S. Dummit|title=''Abstract Algebra''|publisher=John Wiley & Sons|year=2003|isbn=9780471433347|edition=第三版|last2=Richard M. Foote|language=en}} |
|||
| last = Adhikari | first = Mahima Ranjan | last2 = Adhikari | first2 = Avishek | ref = harv |
|||
* {{cite book|author=I. N. Herstein|title=''Topics in Algebra''|publisher=John Wiley & Sons|year=1991|isbn=978-0471010906|edition=第二版|language=en}} |
|||
|title=''Basic Modern Algebra with Applications''|year=2014 |
|||
|publisher=Springer|isbn=978-81-322-1599-8|language=en| url = https://doi.org/10.1007/978-81-322-1599-8 |
|||
* {{cite book|author=John B. Fraleigh|title=''A First Course in Abstract Algebra''|publisher=Pearson|year=2014|isbn=9781292024967|edition=第七版|language=en}} |
|||
}} |
|||
* {{cite book|author=Joseph Gallian|title=''Contemporary Abstract Algebra''|publisher=Cengage Learning|year=2012|isbn=978-1133599708|edition=第八版|language=en}} |
|||
* {{cite book | last = Burris | first = Stanley | last2 = Sankappanavar | first2 = Hanamantagouda P. | ref = harv | title = ''A Course in Universal Algebra'' | year = 1981 | publisher = Springer | isbn = 978-1-4613-8132-7 | language = en | url = https://link.springer.com/book/9781461381327 | access-date = 2024-05-21 | archive-date = 2022-01-05 | archive-url = https://web.archive.org/web/20220105172535/https://link.springer.com/book/9781461381327 | dead-url = no }} |
|||
* {{cite book|author=Mahima Ranjan Adhikari|title=''Basic Modern Algebra with Applications''|publisher=Springer|year=2014|isbn=978-81-322-1599-8|language=en|last2=Avishek Adhikari}} |
|||
* {{cite book | last = Dummit | first = David Steven | last2 = Foote | first2 = Richard Martin | ref = harv | title = ''Abstract Algebra'' | year = 2003 | publisher = John Wiley & Sons | isbn = 9780471433347 | language = en | url = https://www.wiley.com/en-gb/Abstract+Algebra%2C+3rd+Edition-p-9780471433347 | edition = 第三版 | access-date = 2024-05-21 | archive-date = 2024-07-26 | archive-url = https://web.archive.org/web/20240726210759/https://www.wiley.com/en-gb/Abstract+Algebra%2C+3rd+Edition-p-9780471433347 | dead-url = no }} |
|||
* {{cite book|author=Ramji Lal|title='' Algebra 1: Groups, Rings, Fields and Arithmetic''|publisher=Springer|year=2017|isbn=978-981-10-4253-9|language=en}} |
|||
* {{cite book | last = Durbin | first = John Riley | ref = harv | title = ''Modern Algebra: An Introduction'' | year = 2003 | publisher = Wiley | isbn = 978-0470384435 | language = en | url = https://www.wiley.com/en-us/Modern+Algebra%3A+An+Introduction%2C+6th+Edition-p-9780470384435 | edition = 第六版 | access-date = 2024-05-21 | archive-date = 2023-01-29 | archive-url = https://web.archive.org/web/20230129235033/https://www.wiley.com/en-us/Modern+Algebra%3A+An+Introduction%2C+6th+Edition-p-9780470384435 | dead-url = no }} |
|||
* {{cite book|author=Thomas W. Hungerford|title=''Algebra''|publisher=Springer|year=1974|isbn=978-1-4612-6101-8|edition=第三版|language=en}} |
|||
* {{cite book |
|||
* {{cite book|author=余文卿|title=''A Course on Abstract Algebra''|publisher=World Scientific|year=2018|isbn=9780471433347|edition=第二版|last2=張守德|language=en}} |
|||
| last = Eie | first = Minking (余文卿)| last2 = Chang | first2 = Shou-Te (張守德) |ref=harv |
|||
|title=''A Course on Abstract Algebra''|year=2018 |
|||
|publisher=World Scientific|isbn=9780471433347|language=en|url = https://doi.org/10.1142/10700 |
|||
|edition=第二版 |
|||
}} |
|||
* {{cite book | last = Fraleigh | first = John B. | ref = harv | title = ''A First Course in Abstract Algebra'' | year = 2014 | publisher = Pearson | isbn = 9781292024967 | language = en | url = https://www.pearson.com/en-us/subject-catalog/p/first-course-in-abstract-algebra-a/P200000006181/9780135859759 | edition = 第七版 | access-date = 2024-05-21 | archive-date = 2024-05-21 | archive-url = https://web.archive.org/web/20240521142920/https://www.pearson.com/en-us/subject-catalog/p/first-course-in-abstract-algebra-a/P200000006181/9780135859759 | dead-url = no }} |
|||
* {{cite book |
|||
| last = Gallian | first = Joseph | ref = harv |
|||
|title=''Contemporary Abstract Algebra''|year=2012 |
|||
|publisher=Cengage Learning|isbn=978-1133599708|edition=第八版|language=en|url = https://doi.org/10.1201/9781003142331 |
|||
|authorlink = :en:Joseph Gallian |
|||
}} |
|||
* {{cite book |
|||
| last = Hungerford | first = Thomas William | ref = harv |
|||
|title=''Algebra''|year=1974 |
|||
|publisher=Springer|isbn=978-1-4612-6101-8|language=en|url = https://doi.org/10.1007/978-1-4612-6101-8 |
|||
|edition=第三版|authorlink = :en:Thomas W. Hungerford |
|||
}} |
|||
* {{cite book | last = Herstein | first = Israel Nathan | ref = harv | title = ''Topics in Algebra'' | year = 1991 | publisher = John Wiley & Sons | isbn = 978-0471010906 | language = en | url = https://www.wiley.com/en-us/Topics+in+Algebra%2C+2nd+Edition-p-9780471010906 | edition = 第二版 | authorlink = 伊斯雷爾·內森·赫斯坦 | access-date = 2024-05-21 | archive-date = 2024-05-21 | archive-url = https://web.archive.org/web/20240521001317/https://www.wiley.com/en-us/Topics+in+Algebra%2C+2nd+Edition-p-9780471010906 | dead-url = no }} |
|||
* {{cite book |
|||
| last = Lal | first = Ramji | ref = harv |
|||
|title=''Algebra 1: Groups, Rings, Fields and Arithmetic''|year=2017 |
|||
|publisher=Springer|isbn=978-981-10-4253-9|language=en|url = https://doi.org/10.1007/978-981-10-4253-9 |
|||
}} |
|||
* {{cite book |
|||
| last = Wallace | first = David Alexander Ross | ref = harv |
|||
| title = ''Groups, Rings and Fields'' | year = 1998 |
|||
| publisher = Springer | isbn = 978-1-4471-0425-4 | language = en | url = https://doi.org/10.1007/978-1-4471-0425-4 |
|||
}} |
|||
== 外部連結 == |
== 外部連結 == |
||
* [https://ringtheory.herokuapp.com/ Database of Ring Theory] {{Wayback|url=https://ringtheory.herokuapp.com/ |date=20240913070248 }} 一個紀錄了大量環的性質的資料庫 |
|||
* https://ringtheory.herokuapp.com/ |
|||
* https://encyclopediaofmath.org/wiki/Ring |
* 《[[數學百科全書]]》對環的[https://encyclopediaofmath.org/wiki/Ring 定義] {{Wayback|url=https://encyclopediaofmath.org/wiki/Ring |date=20230101135941 }} |
||
* https://mathworld.wolfram.com/Ring.html |
* [[MathWorld]] 對環的[https://mathworld.wolfram.com/Ring.html 定義] {{Wayback|url=https://mathworld.wolfram.com/Ring.html |date=20240121142059 }} |
||
* https://ncatlab.org/nlab/show/ring |
* {{link-en|nLab|nLab}} 對環的[https://ncatlab.org/nlab/show/ring 定義] {{Wayback|url=https://ncatlab.org/nlab/show/ring |date=20240917165232 }} |
||
[[Category:環論|*]] |
[[Category:環論|*]] |
2024年11月13日 (三) 04:53的最新版本
环论 |
---|
代数结构 |
---|
環(英文:Ring)是一種帶有兩個二元運算(抽象化的「加法」和「乘法」)、並且符合特定運算規則的集合。它抽象化了諸如整數、有理數、實數、複數、多項式、矩陣、函數、算子等等的代數結構。它是環論的主要研究對象,並且是構成各種抽象代數理論的重要基本概念。
環的具體定義並沒有完全統一。不同研究方向的學者對於環是否要有乘法單位元有不同見解,在部份情況下甚至不要求乘法有結合律。然而除非明確聲明,否則本條目所稱的「環」是指有乘法單位元、乘法有結合律的環。
定義
[编辑]給定一個集合 以及兩個定義在 上的二元運算 和 [註 1]。如果 、 和 具有以下八個性質[註 2],則稱 [註 3]構成了一個環。
環的乘法經常依照慣例[註 5],不會寫出「 」這個符號。例如(左)分配律就可以寫成:此外,加法單位元也經常稱為「零元素」或直接簡稱為「零」。
定義的分歧
[编辑]環的定義的分歧通常在於是否要求乘法單位元的存在。在 1960 年代以前,多數抽象代數的教科書通常會採用埃米·諾特的定義,不要求乘法單位元存在。然而在 1960 年後,越來越多的著名教科書作者(例如:尼古拉·布爾巴基、大衛·艾森佈德、塞爾日·蘭)開始將乘法單位元的存在性納入定義中。不要求乘法單位元存在的作者,通常會將有乘法單位元的環稱為單位環( unital ring );反之,要求乘法單位元存在的作者,可能會將不含乘法單位元( identity )的環( ring )稱為 rng [註 6]或偽環( pseudo-ring ),或甚至乾脆不提及任何沒有單位元的環。
另外在交換代數的文獻中,通常還會額外約定環的乘法要滿足交換律。這類文獻的作者通常會事先聲明。
例子
[编辑]- 整數 、有理數 、實數 和複數 ,連同尋常的加法和乘法,構成了一個環。它們的加法單位元是 ,乘法單位元是 ,是最典型的實際例子。
- 整係數多項式環 、有理係數多項式環 ,實係數多項式環 、複係數多項式環 ,連同多項式加法和乘法,構成一個環。它們的加法單位元也是 ,乘法單位元也是 。更一般地,可以考慮任何環 的多項式環 。
- 整係數有理函數 、有理係數有理函數 ,實係數有理函數 、複係數有理函數 ,連同有理函數的加法和乘法,構成一個環。它們的加法單位元依然是 ,乘法單位元依然是 。更一般地,可以考慮任何環 的有理函數環 ;而「建構分式」的操作還是「分式體」以及更一般的「局部化」這些概念的起源。
- 大小為 的整係數矩陣 、有理係數矩陣 、實係數矩陣 、或複係數矩陣 ,連同矩陣加法和矩陣乘法,構成一個環。它們的加法單位元是零矩陣 :乘法單位元則是單位矩陣 :同樣的,可以考慮任何環 的矩陣環 。矩陣環也是典型的非交換環。
- 如果集合 只有一個元素,那 只可能定義出唯一的一種環結構——零環[註 7]( Zero ring )。
基本性質
[编辑]- 零元素是唯一的
- 零乘以[註 8]任何東西都是零
- 乘法單位元是唯一的
- 任何元素如果有乘法反元素,那是唯一的
- 多個環元素的分配律:
- 環元素的整數倍與整數次方——整數可以用來當作是任何環的係數,只要定義以下的係數運算規則:這種係數運算規則和普通係數的概念有許多一致性,例如:
- 而類似地如果把多次相加改成多次相乘,那麼可以[註 9]定義冪運算:
- 二項式展開——如果 ,那麼它們總和的次方可以這樣計算:這可以推廣到多個元素 總和的次方——如果任兩個元素的 和 的乘法都可以交換(即 ),那麼:
基本的相關概念
[编辑]特殊的環元素
[编辑]在初等環論中,以下四類型的環元素在任意的環[註 10]中都有定義,它們是經常被討論的對象:
- 可逆元( Unit 或 Invertible element ):有乘法反元素的環元素。
- 零因子( Zero divisor ):相乘後為零的非零元素;相當於「零的因數」。
- 冪零元( Nilpotent ):自乘多次後變成零的環元素。
- 冪等元( Idempotent ):自乘任意多次都不變的環元素。
環同態、核、像
[编辑]在環論中,環同態描述了環與環之間的關係。一個從環 送往環 的環同態( Ring homomorphism ) 簡單來說是一種「維持環結構[註 11]」的映射;而具體來說, 要具有以下三個性質:
- 維持加法的結構——對所有的 ,都有:
- 維持乘法的結構——對所有的 ,都有:
- 維持單位元的結構——也就是:
對一個環同態 來說,有以下兩個密切相關的概念:
- 核( Kernel )——送到零元素的那些元素:
- 像( Image )——把元素都送過去後的結果:
子環、(雙邊)理想、商環
[编辑]給定一個環 ,我們可以考慮它的:
- 子環( Subring )——某個送往 的環同態在 內的像。[註 12]
- 雙邊理想( Two side ideal )——某個定義在 上的環同態的核。
- 商環( Quotient )——(同構意義下)某個定義在 上的環同態的像。[註 13]
一個環的環同態、子環、雙邊理想、商環共同刻劃了環的結構。
具有額外性質的環
[编辑]交換環( commutative ring )
[编辑]如果一個環 還額外滿足:
- 乘法的交換律:對於所有 :
則稱 是一個交換環。交換環是最被深入研究的一類環,其中包括以下幾類:
- 整環( Integral domain ):沒有零因子的交換環。
- 唯一分解整環( Unique factorization domain ):可以唯一分解任何元素的整環。
- 主理想整環( Principal ideal domain ):所有理想都是主理想的整環。
- 歐幾里得整環( Euclidean domain ):可以進行歐幾里得演算法(輾轉相除法)的整環。
- 體( Field ):非零元素都有乘法反元素的交換環。
- 代數閉體( Algebraically closed field ):所有多項式[註 14]都有根的體。
非交換環
[编辑]所謂的非交換環實際上是指「不假設是交換環」的環,這樣子的環有:
- 除環( Division ring ):非零元素都有乘法反元素的環(可能不交換)。
- 單環( Simple ring ):沒有非平凡雙邊理想的環。
從已知的環建構出其他環的方式
[编辑]直積
[编辑]給定數個環 ,可以考慮這些環作為集合的笛卡爾積:
可以在這個集合上用以下方式定義加法和乘法:
這使得構成一個環。稱為 的直積( Direct product );它的法單位元是 乘法單位元是
這種概念可以推廣到無限多個環、甚至不可數多個環的直積。
多項式環
[编辑]給定一個環 ,可以考慮以這個環作為係數的多項式:可以仿照一般的實係數多項式運算規則,為這個集合定義加法和乘法:在這樣的運算規則下, 被稱為是 的多項式環;它的加法單位元以及乘法單位元與 相同。
矩陣環
[编辑]給定一個環 ,可以考慮以這個環作為係數、大小為 的矩陣:
同樣可以仿照一般的矩陣運算規則,為這個集合定義加法和乘法:
那麼 在這樣的運算規則下,構成一個環。它的加法單位元是零矩陣 :乘法單位元則是單位矩陣 :同樣的,可以考慮任何環 的矩陣環 。矩陣環也是典型的非交換環。
局部化與分式體
[编辑]局部化的概念並不是對任何的環都有效,在大多數時候,只會考慮交換環的局部化。粗略地說,局部化是「加入某些元素的乘法反元素」;而分式體則是透過「加入所有非零元素的乘法反元素」來定義。分式體最著名的例子就是從整數構造有理數的過程。
更抽象地講,一個環對某些元素的局部化是「使得這些元素可逆的、最小的環」;在這種意義下,分式體就是「使得非零元素可逆的、最小的環」。而這個概念實際上就是——「包含這個環的最小的體」。
交換環與代數幾何的關係
[编辑]交換環是乘法滿足交換律的環。這種環和代數幾何有著深遠的關聯性,體現在交換環範疇 和仿射概形範疇 有著如下對偶性:
這種對偶性使得交換環的代數性質可以轉換成仿射概形的幾何性質。
參見
[编辑]備註
[编辑]引用
[编辑]參考文獻
[编辑]- 康明昌. 《近世代數》. 聯經. 2000 [2024-05-21]. ISBN 9789570821550. (原始内容存档于2024-05-21) (中文).
- Noether, Emmy. Idealtheorie in Ringbereichen. Mathematische Annalen. 1921, 83 (1-2). ISSN 0025-5831. doi:10.1007/BF01464225 (德语).
- Kemper, Gregor. Hilbert's Nullstellensatz. A Course in Commutative Algebra 256. Berlin, Heidelberg: Springer Berlin Heidelberg. 2011. ISBN 978-3-642-03544-9. doi:10.1007/978-3-642-03545-6_2 (英语).
要求「環」要有乘法單位元的教科書
[编辑]- Artin, Michael. Algebra 2ed. Boston, Mass. Munich: Pearson Education, Prentice Hall. 2011. ISBN 978-0-13-241377-0 (英语).
- Atiyah, Michael Francis; MacDonald, Ian Grant. Introduction To Commutative Algebra. Westview Press. 1994. ISBN 978-0201407518 (英语).
- Bourbaki, Nicolas. Algèbre: Chapitres 1 à 3. Berlin, Heidelberg: Springer Berlin Heidelberg. 2007. ISBN 978-3-540-33849-9. doi:10.1007/978-3-540-33850-5 (法语).
- Cohn, Paul Moritz. Introduction to Ring Theory. Springer. 2000. ISBN 978-1-4471-0475-9 (英语).
- Eisenbud, David. Commutative Algebra: with a View Toward Algebraic Geometry. Springer. 1995. ISBN 978-1-4612-5350-1 (英语).
- Farb, Benson; Dennis, R. Keith. Noncommutative Algebra. Springer. 1993. ISBN 978-0-387-94057-1 (英语).
- Jacobson, Nathan. Basic Algebra I 第二版. Dover. 2009 [2024-05-21]. ISBN 978-0486471891. (原始内容存档于2024-05-21) (英语).
- Lang, Serge. Algebra 第三版. Springer. 2002. ISBN 978-0-387-95385-4 (英语).
- Lang, Serge. Undergraduate Algebra 第三版. Springer. 2005. ISBN 978-0-387-27475-1 (英语).
不要求「環」要有乘法單位元的教科書
[编辑]- Adhikari, Mahima Ranjan; Adhikari, Avishek. Basic Modern Algebra with Applications. Springer. 2014. ISBN 978-81-322-1599-8 (英语).
- Burris, Stanley; Sankappanavar, Hanamantagouda P. A Course in Universal Algebra. Springer. 1981 [2024-05-21]. ISBN 978-1-4613-8132-7. (原始内容存档于2022-01-05) (英语).
- Dummit, David Steven; Foote, Richard Martin. Abstract Algebra 第三版. John Wiley & Sons. 2003 [2024-05-21]. ISBN 9780471433347. (原始内容存档于2024-07-26) (英语).
- Durbin, John Riley. Modern Algebra: An Introduction 第六版. Wiley. 2003 [2024-05-21]. ISBN 978-0470384435. (原始内容存档于2023-01-29) (英语).
- Eie, Minking (余文卿); Chang, Shou-Te (張守德). A Course on Abstract Algebra 第二版. World Scientific. 2018. ISBN 9780471433347 (英语).
- Fraleigh, John B. A First Course in Abstract Algebra 第七版. Pearson. 2014 [2024-05-21]. ISBN 9781292024967. (原始内容存档于2024-05-21) (英语).
- Gallian, Joseph. Contemporary Abstract Algebra 第八版. Cengage Learning. 2012. ISBN 978-1133599708 (英语).
- Hungerford, Thomas William. Algebra 第三版. Springer. 1974. ISBN 978-1-4612-6101-8 (英语).
- Herstein, Israel Nathan. Topics in Algebra 第二版. John Wiley & Sons. 1991 [2024-05-21]. ISBN 978-0471010906. (原始内容存档于2024-05-21) (英语).
- Lal, Ramji. Algebra 1: Groups, Rings, Fields and Arithmetic. Springer. 2017. ISBN 978-981-10-4253-9 (英语).
- Wallace, David Alexander Ross. Groups, Rings and Fields. Springer. 1998. ISBN 978-1-4471-0425-4 (英语).