跳转到内容

双眼视觉:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Jiapeng留言 | 贡献
无编辑摘要
回退102.129.75.79对话)的编辑,改回InternetArchiveBot的最后一个版本
 
(未显示21个用户的32个中间版本)
第1行: 第1行:
{{Translating|||time=2012-02-23T05:14:13+00:00 }}
[[File:Hazel-green eye 2.jpg|thumb|人的两只眼睛。]]
[[File:Hazel-green eye 2.jpg|thumb|人的两只眼睛。]]
[[File:Eagle Haliaeetus leucocephalus Binocular.jpg|thumb|[[白頭海鵰]]的眼睛。]]


'''双眼视觉''',英文'''Binocular vision''',是指[[生物]]在双[[]]视野范围互相重叠下,所产生的[[视觉]]。英文''binocular''的两个词根均来自于[[拉丁]],''bini''的意思是'''',''colulous''的意思是''眼睛''<ref>Harper, D. (2001). Online etymological dictionary. Retrieved April 2, 2008, from http://www.etymonline.com/index.php?term=binocular</ref>。 其成因为双眼因具有[[瞳距]],而在[[视网膜]]产生有差别但又基本相似的图像,这种视觉信号传送至大脑之后,大脑将两幅图像之间的差异进行整合,即可判断出眼睛到物体之间的精准距离关系<ref>簡志忠,《附錄B》,[http://cslin.auto.fcu.edu.tw/bioassist/eyetrack/paper3/3-14.htm http://cslin.auto.fcu.edu.tw/bioassist/eyetrack/paper3/3-14.htm],發表日期不明。{{languageicon|zh|中文}}</ref>。 与[[视觉|单眼视觉]]相比,双眼视觉有四个明显的好处:
'''双眼视觉'''(binocular vision)是指两眼能朝同方向且有重叠视野的动物,可感知周围单一[[三维]]物像的[[视觉]];由于两眼只看到融合一个[[成像]],又称'''双眼单视'''。英语 binocular 源于[[拉丁]],''bini''”之义,''ocularis'' “眼意思<ref>Harper, D. (2001). Online etymological dictionary. Retrieved April 2, 2008, from http://www.etymonline.com/index.php?term=binocular {{Wayback|url=http://www.etymonline.com/index.php?term=binocular |date=20120127172331 }}</ref>。


双眼视觉的成因为双眼因有[[瞳距]],而在[[视网膜]]产生有差别但又基本相似的图像,这种视觉信号传送至大脑之后,大脑将两幅图像之间的差异进行整合,即可判断出眼睛到物体之间的精准距离关系<ref>簡志忠,《附錄B》,[http://cslin.auto.fcu.edu.tw/bioassist/eyetrack/paper3/3-14.htm http://cslin.auto.fcu.edu.tw/bioassist/eyetrack/paper3/3-14.htm] {{Wayback|url=http://cslin.auto.fcu.edu.tw/bioassist/eyetrack/paper3/3-14.htm |date=20090912042332 }},發表日期不明。{{languageicon|zh|中文}}</ref>。双眼视觉可分为三个阶段:同时视、融合功能、立体知觉<ref>{{Cite web |url=https://www.termonline.cn/search?searchText=binocular+vision |title=存档副本 |access-date=2024-01-05 |archive-date=2024-01-05 |archive-url=https://web.archive.org/web/20240105124014/https://www.termonline.cn/search?searchText=binocular+vision |dead-url=no }}</ref>。
# 比一只眼睛多一个备份,减少因损坏影响生存的率。

与[[视觉|单眼视觉]]相比,双眼视觉有四个明显的好处:
# 比一只眼睛多一个备份,减少因损坏影响生存的率。
# [[视场]]范围更大。比如说,人们两只眼睛的总视场有近 200 度,中间部分大概有 120 度是双眼视觉区域,两侧各 40 度是单眼视觉区域<ref>Henson, D.B. (1993). Visual Fields. Oxford: Oxford University Press.</ref>。
# [[视场]]范围更大。比如说,人们两只眼睛的总视场有近 200 度,中间部分大概有 120 度是双眼视觉区域,两侧各 40 度是单眼视觉区域<ref>Henson, D.B. (1993). Visual Fields. Oxford: Oxford University Press.</ref>。
# [[双眼加和]]作用使得两只眼睛能够相互弥补对方看不清的部分<ref>{{Cite journal|doi=10.3758/BF03198631|first1=Randolph |last1=Blake |first2=Robert |last2=Fox |month=August |year=1973 |title=The psychophysical inquiry into binocular summation. |url=http://psycnet.apa.org/?fa=main.doiLanding&uid=1974-10241-001 |journal=Perception & Psychophysics |volume=14 |issue=1 |pages=161–85}}</ref>。
# [[双眼加和]]作用使得两只眼睛能够相互弥补对方看不清的部分<ref>{{Cite journal |doi=10.3758/BF03198631 |first1=Randolph |last1=Blake |first2=Robert |last2=Fox |title=The psychophysical inquiry into binocular summation. |url=http://psycnet.apa.org/?fa=main.doiLanding&uid=1974-10241-001 |journal=Perception & Psychophysics |volume=14 |issue=1 |pages=161–85 |date=August 1973 |access-date=2012-02-23 |archive-date=2020-03-27 |archive-url=https://web.archive.org/web/20200327173333/http://psycnet.apa.org/?fa=main.doiLanding&uid=1974-10241-001 |dead-url=no }}</ref>。
# 双眼视觉形成的[[视差]]可以辅助产生精细的[[深度知觉]],进而产生[[立体视觉]]<ref name="Wheatstone1838">{{Cite journal|first1=Charles |last1=Wheatstone |year=1838 |title=Contributions to the physiology of vision.—Part the First. On some remarkable, and hitherto unobserved, phænomena of binocular vision |journal=Philosophical Transactions of the Royal Society of London |volume=128|issue=0 |pages=371–394 |doi=10.1098/rstl.1838.0019}}</ref> 。
# 双眼视觉形成的[[视差]]可以辅助产生精细的[[深度知觉]],进而产生[[立体视觉]]<ref name="Wheatstone1838">{{Cite journal|first1=Charles |last1=Wheatstone |year=1838 |title=Contributions to the physiology of vision.—Part the First. On some remarkable, and hitherto unobserved, phænomena of binocular vision |journal=Philosophical Transactions of the Royal Society of London |volume=128|issue=0 |pages=371–394 |doi=10.1098/rstl.1838.0019}}</ref> 。


双眼视觉通常伴随着视觉的融合,尽管两只眼睛中的图像不相同,但是视觉在融合后可以产生单一的整体感觉<ref name="Wheatstone1838" />。 其他与双眼视觉有关的现象包括[[utrocular discrimination]],[[优势眼]],双眼竞争。如果双眼视觉了问题,可以寻求[[视轴矫正法|视轴矫正]]师医治。
双眼视觉伴随着视觉的融合,尽管两只眼睛中的图像稍有差别或可能因视力不同而不相同,但是视觉在融合后可以产生单一的整体感觉<ref name="Wheatstone1838" />。 其他与双眼视觉有关的现象包括[[utrocular discrimination]],[[优势眼]],双眼竞争。如果双眼视觉了问题,可以寻求[[视轴矫正法|视轴矫正]]师医治。


==[[视场]]和眼动==
== 视场和眼动 ==
[[File:Fieldofview-pigeon-owl.svg|thumb|[[鸽子]](Pigeon)和[[鹰]](owl)的视野范围比较。]]
[[File:Fieldofview-pigeon-owl.svg|thumb|[[鸽子]](Pigeon)和[[猫头|猫头鹰(鸮,xiao)]](Owl)的视野范围比较。]]
对于[[被捕食者]]来说,他们的眼睛通常长在头的两侧,这样他们就能够拥有尽可能宽的[[视野]],比如[[兔]],[[水牛]]和[[羚羊]]。这些动物的两只眼睛通常能够独立转动,这样可以增加视野范围。某些鸟类,即使保持眼睛不动,也可以实现360度的视野。而[[捕食者]]的眼睛通常位于它们头部前方,这样可以产生双眼视觉和[[立体视觉]]。比如[[人]],[[鹰]],[[狼]]和[[蛇]]。然而还有一些捕食者,尤其是某些大型动物,如[[蓝鲸]]和[[虎鲸]],它们的眼睛却位于头的两侧。还有些动物并不是严格意义上的捕食者,如[[狐蝠科|果蝠]]和某些[[灵长类]],它们的眼睛是面向前方的。这些动物通常需要精细的[[深度视觉]]来帮助它们提高抓取水果或者树枝的能力。
对于[[被捕食者]]来说,他们的眼睛通常长在头的两侧,这样他们就能够拥有尽可能宽的[[视野]],比如[[兔]],[[水牛]]和[[羚羊]]。这些动物的两只眼睛通常能够独立转动,这样可以增加视野范围。某些鸟类,即使保持眼睛不动,也可以实现360度的视野。而[[捕食者]]的眼睛通常位于它们头部前方,这样可以产生双眼视觉和[[立体视觉]]。比如[[人]],[[鹰]],[[狼]]和[[蛇]]。然而还有一些捕食者,尤其是某些大型动物,如[[蓝鲸]]和[[虎鲸]],它们的眼睛却位于头的两侧。还有些动物并不是严格意义上的捕食者,如[[狐蝠科|果蝠]]和某些[[灵长类]],它们的眼睛是面向前方的。这些动物通常需要精细的[[深度视觉]]来帮助它们提高抓取水果或者树枝的能力。


第18行: 第21行:




==双眼加和==
== 双眼加和 ==
{{Main|双眼加和}}
{{Main|双眼加和}}
[[双眼加和]]是指双眼一起对某种[[视觉刺激]]的反应阈值要低于单只眼睛。主要有两种形式:第一,在试图看清一个模糊信号时,两只眼睛相比一只眼睛由于接收的能量更多,所以具有统计学上的优势。从数学上看,双眼对于单眼的优势差不多相当于根号2,大约1.41倍{{Citation needed|date=December 2011}}。第二,[[视皮层]]的某些细胞在接受双眼同时输入时,细胞的[[发放]]会比分别给予单只眼睛视觉输入时发放的总和还要强。使用双眼比单眼有1.41倍的优势,这种现象还叫做[[神经加和现象]]。
[[Binocular summation]] means that the detection threshold for a [[stimulus (physiology)|stimulus]] is lower with two eyes than with one. There are two forms. First, when trying to detect a faint signal, there is a statistical advantage of using two detectors over using one. Mathematically, the advantage is equal to the square root of 2, about 1.41.{{Citation needed|date=December 2011}} Second, when some cells in the [[visual cortex]] receive input from both eyes simultaneously, they show [[binocular facilitation]], a greater level of activity than the sum of the two activities evoked separately from each eye. Any advantage in using two eyes in detection task over 1.41 is credited to this sort of mechanism, dubbed [[neural summation]].


==双眼相互作用==
== 双眼相互作用 ==
除了双眼加和现象,两只眼睛之间最少还在三个方面存在相互作用:
Apart from binocular summation, the two eyes can influence each other in at least three ways.


* 瞳孔直径:射入一只眼睛中的光线会影响到双眼的[[瞳孔]]直径。这一点很好检测,在身边找一个朋友,当他的一只眼睛(A)睁着的时候,另外一只眼睛(B)的瞳孔比较小,但是当眼睛(A)闭上的时候,眼睛(B)的瞳孔就会放大。
*[[Pupil|Pupillary diameter]]. Light falling in one eye affects the diameter of the [[pupil]]s in both eyes. One can easily see this by looking at a friend's eye while he or she closes the other: when the other eye is open, the pupil of the first eye is small; when the other eye is closed, the pupil of the first eye is large.


* [[聚焦(眼)|聚焦]]和[[辐辏]]:聚焦是指眼睛的聚焦状态。如果将一只眼睛(A)睁着,闭上另外一只眼睛(B),当用眼睛(A)注视一个近处的物体时,闭上的那只眼睛的聚焦情况和睁开的那只眼睛相同。另外,那只闭上的眼睛(B)还会将其焦点指向眼睛(A)注视的物体。有研究表明,两只眼睛依靠反射弧来实现同步聚焦和辐辏。
*[[Accommodation (eye)|Accommodation]] and [[vergence]]. Accommodation is the state of focus of the eye. If one eye is open and the other closed, and one focuses on something close, the accommodation of the closed eye will become the same as that of the open eye. Moreover, the closed eye will tend to converge to point at the object. Accommodation and convergence are linked by a reflex, so that one evokes the other.


* [[双眼之间的传递效应]] 一只眼睛的聚焦状况可以影响另外一只眼睛对光线的适应状况。[[运动后效|视觉后效]]可以从一只眼睛传递到另外一只眼睛。这种传递效应在一定程度上证明了[[双眼细胞]]在[[视皮层]]的存在。
*[[Interocular transfer]]. The state of [[Adaptation (eye)|adaptation]] of one eye can have a small effect on the state of light adaptation of the other. [[Aftereffect]]s induced through one eye can be measured through the other.


== 双眼单视 ==
==Utrocular discrimination==
[[Utrocular]] discrimination is the ability to tell, when both eyes are open, to which eye a monocular stimulus was shown.<ref>{{Cite journal|doi=10.3758/BF03199861|first1=Randolph |last1=Blake |first2=Robert H. |last2=Cormack |month=July |year=1979 |title=On utrocular discrimination |url=http://psycnet.apa.org/?fa=main.doiLanding&uid=1980-31686-001 |journal=Perception & Psychophysics |volume=26 |issue=1 |pages=53–68}}</ref>

==双眼单视==
{{Main|双眼单视}}
{{Main|双眼单视}}
一旦雙眼視野重疊,就會有對同一物體在左右眼的影像產生潛在性的混亂。這可以用兩種方法解決:其中一眼的視覺被壓抑或者是雙眼影像互相融合成一。
Once the fields of view overlap, there is a potential for confusion between the left and right eye's image of the same object. This can be dealt with in two ways: one image can be [[suppression (eye)|suppressed]], so that only the other is seen, or the two images can be fused. If two images of a single object are seen, this is known as [[Diplopia|double vision]] or [[diplopia]]. Fusion of the images from the two eyes is considered to be separate from [[stereopsis]] for at least two reasons. First, some disorders of binocular vision, such as [[strabismus]] can spare fusion but abolish stereopsis. Second, the depth of an object either much nearer to or farther from where the eyes are fixating can be accurately judged despite the images of the object appearing double.
== 优势眼 ==

Fusion of images occurs only in a small volume of visual space around where the eyes are fixating. Running through the fixation point in the horizontal plane is a curved line for which objects there fall on corresponding retinal points in the two eyes. This line is called the empirical horizontal [[horopter]]. There is also an empirical [[vertical horopter]], which is effectively tilted away from the eyes above the fixation point and towards the eyes below the fixation point. The horizontal and vertical horopters mark the centre of the volume of singleness of vision. Within this thin, curved volume, objects nearer and farther than the horopters are seen as single. The volume is known as [[Panum's fusional area]] (it's presumably called an area because it was measured by Panum only in the horizontal plane). Outside of Panum's fusional area (volume), double vision occurs.

==优势眼==
{{Main|优势眼}}
{{Main|优势眼}}
由于每只眼睛都可以向大脑传输一幅图像,因此就有可能将[[潘农融合区]]内外的物体排列到一起。有一个检测优势眼的简便方法:将一个水杯(或者其他小物体)放在房间的远处,在一张白纸上掏一个指甲盖大的小孔,将白纸放在眼前约20厘米的位置,透过小孔去看水杯。此时盖上一只眼睛,如果盖上的这只眼睛看不到水杯,就表明这只眼睛是优势眼。通常情况下,人们通常用来瞄准的眼睛就是优势眼。
When each eye has its own image of objects, it becomes impossible to align images outside of Panum's fusional area with an image inside the area. This happens when one has to point to a distant object with one's finger. When one looks at one's fingertip, it is single but there are two images of the distant object. When one looks at the distant object it is single but there are two images of one's fingertip. To point successfully, one of the double images has to take precedence and one be ignored or suppressed ([[eye dominance]]). The eye of the image that takes precedence is called the [[dominant eye]].


==立体视觉==
== 立体视觉 ==
{{Main|立体视觉}}
{{Main|立体视觉}}
[[Stereopsis]] is an ability to make fine depth discriminations from [[parallax]] provided by the two eye's different positions on the head. There are two sorts: quantitative stereopsis, in which the depth seen is very similar to the actual depth of the object being judged, and qualitative stereopsis, in which the depth is correctly nearer or farther than the fixation point but the amount of depth does not grow with distance of the object from the fixation point. Quantitative stereopsis holds for small distances from the fixation plane (approximately within Panum's fusional area); qualitative stereopsis holds for larger distances from the fixation plane (outside of Panum's fusional area). Eventually an object can be moved so far from the fixation plane that there is no sense of depth of the double image{{ndash}} instead they appear to be on the fixation plane.


==Allelotropia==
== 双眼竞争 ==
Because the eyes are in different positions on the head, any object away from fixation and off the plane of the horopter has a different [[visual direction]] in each eye. Yet when the two monocular images of the object are fused, creating a [[Cyclopean image]], the object has a new visual direction, essentially the average of the two monocular visual directions. This is called [[allelotropia]]. The origin of the new visual direction is a point approximately between the two eyes, the so-called [[cyclopean eye]]. The position of the cyclopean eye is not usually exactly centered between the eyes, but tends to be closer to the dominant eye.

==双眼竞争==
{{Main|双眼竞争}}
{{Main|双眼竞争}}
When very different images are shown to the same retinal regions of the two eyes, perception settles on one for a few moments, then the other, then the first, and so on, for as long as one cares to look. This alternation of perception between the images of the two eyes is called [[binocular rivalry]].

==双眼视觉异常==
To maintain stereopsis and singleness of vision, the eyes need to be pointed accurately. The position of each eye in its [[orbit]] is controlled by six [[extraocular muscle]]s. Slight differences in the length or insertion position or strength of the same muscles in the two eyes can lead to a tendency for one eye to drift to a different position in its orbit from the other, especially when one is tired. This is known as [[phoria]]. One way to reveal it is with the [[cover-uncover test]]. To do this test, look at a cooperative person's eyes. Cover one eye of that person with a card. Have the person look at your finger tip. Move the finger around; this is to break the reflex that normally holds a covered eye in the correct vergence position. Hold your finger steady and then uncover the person's eye. Look at the uncovered eye. You may see it flick quickly from being wall-eyed or cross-eyed to its correct position. If the uncovered eye moved from out to in, the person has [[exophoria]]. If it moved from in to out, the person has [[esophoria]]. If the eye did not move at all, the person has [[orthophoria]]. Most people have some amount of exophoria or esophoria; it is quite normal. If the uncovered eye also moved vertically, the person has [[hyperphoria]] (if the eye moved from up to down) or [[hypophoria]] (if the eye moved from down to up). Such vertical phorias are quite rare. It is also possible for the covered eye to rotate in its orbit. Such [[cyclophoria]]s cannot be seen with the cover-uncover test; they are rarer than vertical phorias.

During the cover-uncover test, a person with some phoria will notice a brief episode of double vision or [[diplopia]] after uncovering the eye. This is a normal consequence of the eye's being briefly misaligned. If the diplopia is enduring, that is considered a disorder.


== 双眼视觉异常 ==
The cover-uncover test can also be used for more problematic disorders of binocular vision, the [[tropia]]s. In the cover part of the test, the examiner looks at the first eye as he or she covers the second. If the eye moves from out to in, the person has [[exotropia]]. If it moved from in to out, the person has [[esotropia]]. People with exotropia or esotropia are wall-eyed or cross-eyed respectively. These are forms of [[strabismus]] with [[amblyopia]]. When the covered eye is the non-amblyopic eye, the amblyopic eye suddenly becomes the person's only means of seeing. The strabismus is revealed by the movement of that eye to fixate on the examiner's finger. There are also vertical tropias ([[hypertropia]] and [[hypotropia]]) and [[cyclotropia]]s.


==另外参见==
== 另外参见 ==
{{wiktionary}}
{{wiktionary}}
* [[弱视]]
* [[弱视]]
第79行: 第66行:
* [[视觉疗法]]
* [[视觉疗法]]


==参考文献==
== 参考文献 ==
{{Reflist}}
{{Reflist}}


==扩展阅读==
== 扩展阅读 ==
* Scott B. Steinman, Barbara A. Steinman and Ralph Philip Garzia. (2000). ''Foundations of Binocular Vision: A Clinical perspective''. McGraw-Hill Medical. ISBN 0-8385-2670-5.
* Scott B. Steinman, Barbara A. Steinman and Ralph Philip Garzia. (2000). ''Foundations of Binocular Vision: A Clinical perspective''. McGraw-Hill Medical. ISBN 0-8385-2670-5.
* [[:En:LCD shutter glasses|液晶快门眼镜]]
* {{link-en|液晶快门眼镜|LCD shutter glasses}}
* {{cite journal | last1 = Blake | first1 = Randolph | last2 = Wilson | first2 = Hugh | year = 2011 | title = Binocular vision | url = | journal = Vision Research | volume = 51 | issue = 7| pages = 754–770 | doi = 10.1016/j.visres.2010.10.009 | pmid = 20951722 | pmc = 3050089 }}
* {{cite book|first1=Scott B.|last1=Steinman|first2=Barbara A.|last2=Steinman|first3=Ralph Philip|last3=Garzia|year=2000|title=Foundations of Binocular Vision: A Clinical perspective|url=https://archive.org/details/foundationsofbin0000stei|publisher=McGraw-Hill Medical|isbn=0-8385-2670-5}}
* {{cite book|title=Normal Binocular Vision: Theory, Investigation and Practical Aspects|first2=Robert|last2=Fletcher|first1=David|last1=Stidwell|publisher=John Wiley & Sons|year=2017|isbn=9781119480334}}


==外部链接==
== 外部链接 ==
* {{Cite journal|pmid=15371590 |doi=10.1056/NEJM200409163511224 |year=2004 |month=Sep |last1=Livingstone |first1=MS |last2=Conway |title=Was Rembrandt stereoblind? |volume=351 |issue=12 |pages=1264–5 |issn=0028-4793 |journal=The New England journal of medicine |first2=BR |pmc=2634283}}
* {{Cite journal|pmid=15371590 |doi=10.1056/NEJM200409163511224 |last1=Livingstone |first1=MS |last2=Conway |title=Was Rembrandt stereoblind? |volume=351 |issue=12 |pages=1264–5 |issn=0028-4793 |journal=The New England journal of medicine |first2=BR |pmc=2634283|date=Sep 2004}}
* {{PDFlink|[http://www.journalofvision.org/content/10/1/10.full.pdf Disparity sensitivity in man and owl: Psychophysical evidence for equivalent perception of shape-from-stereo]}}
* {{PDFlink|[http://www.journalofvision.org/content/10/1/10.full.pdf Disparity sensitivity in man and owl: Psychophysical evidence for equivalent perception of shape-from-stereo]}}
* [http://www.visiontherapystories.org/lazy_eye_amblyopia.html Gaining Binocular Vision - No Longer Stereoblind - People Tell Their Stories]
* [http://www.visiontherapystories.org/lazy_eye_amblyopia.html Gaining Binocular Vision - No Longer Stereoblind - People Tell Their Stories]{{Wayback|url=http://www.visiontherapystories.org/lazy_eye_amblyopia.html |date=20120226084358 }}
*[http://www.VisionSimulations.com/ VisionSimulations.com |Images and vision simulators of various diseases and conditions of the eye]
*[http://www.VisionSimulations.com/ VisionSimulations.com |Images and vision simulators of various diseases and conditions of the eye]{{Wayback|url=http://www.visionsimulations.com/ |date=20060102212031 }}
* {{MeshName|Binocular+Vision}}
* {{MeshName|Binocular+Vision}}
* [http://vision2.googlecode.com/ Vision2] - [[Open source]] [[Java (programming language)|Java]] [[Computer program|program]] for binocular vision examination using [[shutter glasses]]
* [http://vision2.googlecode.com/ Vision2]{{dead link|date=2017年12月 |bot=InternetArchiveBot |fix-attempted=yes }} - [[Open source]] [[Java]] [[Computer program|program]] for binocular vision examination using [[shutter glasses]]


{{DEFAULTSORT:双眼视觉}}
{{DEFAULTSORT:双眼视觉}}
[[Category:视觉]]
[[Category:视觉]]
[[Category:立体视觉]]
[[Category:立体视觉]]

[[ar:رؤية مزدوجة]]
[[ca:Visió binocular]]
[[de:Stereoskopisches Sehen]]
[[en:Binocular vision]]
[[es:Visión binocular]]
[[eo:Duokula vidkapablo]]
[[fr:Vision binoculaire]]
[[it:Visione binoculare]]
[[lv:Binokulārā redze]]
[[hu:Binokuláris látás]]
[[nl:Binoculaire dispariteit]]
[[pl:Widzenie stereoskopowe]]
[[pt:Visão binocular]]
[[ru:Бинокулярное зрение]]
[[sv:Binokulär syn]]
[[uk:Бінокулярний зір]]

2024年12月13日 (五) 07:29的最新版本

人的两只眼睛。
白頭海鵰的眼睛。

双眼视觉(binocular vision)是指两眼能朝同方向且有重叠视野的动物,可感知周围单一三维物像的视觉;由于两眼只看到融合的一个成像,又称双眼单视。英语 binocular 源于拉丁语bini “双”之义,ocularis “眼的”意思[1]

双眼视觉的成因为双眼因有瞳距,而在视网膜产生有差别但又基本相似的图像,这种视觉信号传送至大脑之后,大脑将两幅图像之间的差异进行整合,即可判断出眼睛到物体之间的精准距离关系[2]。双眼视觉可分为三个阶段:同时视、融合功能、立体知觉[3]

单眼视觉相比,双眼视觉有四个明显的好处:

  1. 比一只眼睛多一个备份,减少因损坏影响生存的机率。
  2. 视场范围更大。比如说,人们两只眼睛的总视场有近 200 度,中间部分大概有 120 度是双眼视觉区域,两侧各 40 度是单眼视觉区域[4]
  3. 双眼加和作用使得两只眼睛能够相互弥补对方看不清的部分[5]
  4. 双眼视觉形成的视差可以辅助产生精细的深度知觉,进而产生立体视觉[6]

双眼视觉伴随着视觉的融合,尽管两只眼睛中的图像稍有差别或可能因视力不同而不相同,但是视觉在融合后可以产生单一的整体感觉[6]。 其他与双眼视觉有关的现象包括utrocular discrimination优势眼,双眼竞争。如果双眼视觉出了问题,可以寻求视轴矫正师医治。

视场和眼动

[编辑]
鸽子(Pigeon)和猫头鹰(鸮,xiao)(Owl)的视野范围比较。

对于被捕食者来说,他们的眼睛通常长在头的两侧,这样他们就能够拥有尽可能宽的视野,比如水牛羚羊。这些动物的两只眼睛通常能够独立转动,这样可以增加视野范围。某些鸟类,即使保持眼睛不动,也可以实现360度的视野。而捕食者的眼睛通常位于它们头部前方,这样可以产生双眼视觉和立体视觉。比如。然而还有一些捕食者,尤其是某些大型动物,如蓝鲸虎鲸,它们的眼睛却位于头的两侧。还有些动物并不是严格意义上的捕食者,如果蝠和某些灵长类,它们的眼睛是面向前方的。这些动物通常需要精细的深度视觉来帮助它们提高抓取水果或者树枝的能力。

双眼前视动物的两只眼睛通常是联动的。当两只眼睛水平运动时,英文叫做 version。当两只眼睛朝相反的方向运动时叫做聚散,如果眼睛都朝鼻侧转动,叫做汇聚,如果都朝颞侧转动,叫做发散。还有些动物,比如人(尤其是外斜视患者),还有椋鸟,它们的眼睛既可以将两只眼睛转到两边形成宽广的视野,也可以将两只眼睛汇聚形成立体视觉。一个很显著的例子是变色龙,它们的每只眼睛可以独立的像炮塔一样上下左右自由转动,然而,当它们在捕食的时候,却可以将两只眼睛汇聚到一个物体上形成立体视觉。


双眼加和

[编辑]

双眼加和是指双眼一起对某种视觉刺激的反应阈值要低于单只眼睛。主要有两种形式:第一,在试图看清一个模糊信号时,两只眼睛相比一只眼睛由于接收的能量更多,所以具有统计学上的优势。从数学上看,双眼对于单眼的优势差不多相当于根号2,大约1.41倍[來源請求]。第二,视皮层的某些细胞在接受双眼同时输入时,细胞的发放会比分别给予单只眼睛视觉输入时发放的总和还要强。使用双眼比单眼有1.41倍的优势,这种现象还叫做神经加和现象

双眼相互作用

[编辑]

除了双眼加和现象,两只眼睛之间最少还在三个方面存在相互作用:

  • 瞳孔直径:射入一只眼睛中的光线会影响到双眼的瞳孔直径。这一点很好检测,在身边找一个朋友,当他的一只眼睛(A)睁着的时候,另外一只眼睛(B)的瞳孔比较小,但是当眼睛(A)闭上的时候,眼睛(B)的瞳孔就会放大。
  • 聚焦辐辏:聚焦是指眼睛的聚焦状态。如果将一只眼睛(A)睁着,闭上另外一只眼睛(B),当用眼睛(A)注视一个近处的物体时,闭上的那只眼睛的聚焦情况和睁开的那只眼睛相同。另外,那只闭上的眼睛(B)还会将其焦点指向眼睛(A)注视的物体。有研究表明,两只眼睛依靠反射弧来实现同步聚焦和辐辏。

双眼单视

[编辑]

一旦雙眼視野重疊,就會有對同一物體在左右眼的影像產生潛在性的混亂。這可以用兩種方法解決:其中一眼的視覺被壓抑或者是雙眼影像互相融合成一。

优势眼

[编辑]

由于每只眼睛都可以向大脑传输一幅图像,因此就有可能将潘农融合区内外的物体排列到一起。有一个检测优势眼的简便方法:将一个水杯(或者其他小物体)放在房间的远处,在一张白纸上掏一个指甲盖大的小孔,将白纸放在眼前约20厘米的位置,透过小孔去看水杯。此时盖上一只眼睛,如果盖上的这只眼睛看不到水杯,就表明这只眼睛是优势眼。通常情况下,人们通常用来瞄准的眼睛就是优势眼。

立体视觉

[编辑]

双眼竞争

[编辑]

双眼视觉异常

[编辑]

另外参见

[编辑]

参考文献

[编辑]
  1. ^ Harper, D. (2001). Online etymological dictionary. Retrieved April 2, 2008, from http://www.etymonline.com/index.php?term=binocular页面存档备份,存于互联网档案馆
  2. ^ 簡志忠,《附錄B》,http://cslin.auto.fcu.edu.tw/bioassist/eyetrack/paper3/3-14.htm页面存档备份,存于互联网档案馆),發表日期不明。(中文)
  3. ^ 存档副本. [2024-01-05]. (原始内容存档于2024-01-05). 
  4. ^ Henson, D.B. (1993). Visual Fields. Oxford: Oxford University Press.
  5. ^ Blake, Randolph; Fox, Robert. The psychophysical inquiry into binocular summation.. Perception & Psychophysics. August 1973, 14 (1): 161–85 [2012-02-23]. doi:10.3758/BF03198631. (原始内容存档于2020-03-27). 
  6. ^ 6.0 6.1 Wheatstone, Charles. Contributions to the physiology of vision.—Part the First. On some remarkable, and hitherto unobserved, phænomena of binocular vision. Philosophical Transactions of the Royal Society of London. 1838, 128 (0): 371–394. doi:10.1098/rstl.1838.0019. 

扩展阅读

[编辑]

外部链接

[编辑]