跳转到内容

康托尔悖论:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
Add 1 book for verifiability (20210209)) #IABot (v2.0.8) (GreenC bot
讨论和结论:​Typo fixing, replaced: 的的 → 的
 
(未显示2个用户的2个中间版本)
第1行: 第1行:
在[[数学]]中,'''康托尔悖论'''是[[集合论]]的一个定理,即没有最大的[[基数]],所以“无限大小”的搜集自身是无限的。进一步的,从这个事实得出这个搜集不是集合而是[[真类]];在[[冯诺伊曼-博内斯-哥德尔集合论|von Neumann-Bernays-Gödel集合论]]中从这个事实得出大小限制公理,即这个真类和所有集合的集合之間存在雙射。所以,不只是有无限多个无限,而是这个无限大于无限的任何枚举。
在[[数学]]中,'''康托尔悖论'''是[[集合论]]的一个定理,即没有最大的[[基数 (数学)|基数]],所以“无限大小”的搜集自身是无限的。进一步的,从这个事实得出这个搜集不是集合而是[[真类]];在[[冯诺伊曼-博内斯-哥德尔集合论|von Neumann-Bernays-Gödel集合论]]中从这个事实得出大小限制公理,即这个真类和所有集合的集合之間存在雙射。所以,不只是有无限多个无限,而是这个无限大于无限的任何枚举。


这个悖论以德國數學家[[格奥尔格·康托尔]]命名,他在1899年(或在1895年到1897年之间)首先提出了它。像多数数学悖论一样,它实际上不是矛盾,而是在关于无限本质和集合概念的情况下错误直觉的体现。换个方式说,它在[[朴素集合论]]中的确是悖论,從而证实了这个理论对数学發展的需要是不充足的。在其後的各個公理化集合論中,這個悖論已經被解決。
这个悖论以德國數學家[[格奥尔格·康托尔]]命名,他在1899年(或在1895年到1897年之间)首先提出了它。像多数数学悖论一样,它实际上不是矛盾,而是在关于无限本质和集合概念的情况下错误直觉的体现。换个方式说,它在[[朴素集合论]]中的确是悖论,從而证实了这个理论对数学發展的需要是不充足的。在其後的各個公理化集合論中,這個悖論已經被解決。
第14行: 第14行:


==讨论和结论==
==讨论和结论==
因为基数是通过[[序数]]标定(indexing)而是良序的,(参见[[基数#定义]]),这也确立了没有最大序数;反过来,后者陈述蕴涵了康托尔悖论。通过应用这个标定到[[布拉利-福尔蒂悖论]],我们还總結出基数们是[[真类]]而不是集合,而(至少在 [[冯诺伊曼-博内斯-哥德尔集合论|von Neumann-Bernays-Gödel 集合论]]中)由此可知,存在基数的类和所有集合的类之间的双射。因为所有集合是后者这个类的子集,而所有势都是一个集合的势(根據定义),直觉上這就是說基数的搜集的“势”大于任何集合的势:它比任何真无穷更加无穷。这是康托尔悖论的悖论本质。
因为基数是通过[[序数]]标定(indexing)而是良序的,(参见{{section link|基数 (数学)#基數序列及連續統假設}}),这也确立了没有最大序数;反过来,后者陈述蕴涵了康托尔悖论。通过应用这个标定到[[布拉利-福尔蒂悖论]],我们还總結出基数们是[[真类]]而不是集合,而(至少在 [[冯诺伊曼-博内斯-哥德尔集合论|von Neumann-Bernays-Gödel 集合论]]中)由此可知,存在基数的类和所有集合的类之间的双射。因为所有集合是后者这个类的子集,而所有势都是一个集合的势(根據定义),直觉上這就是說基数的搜集的“势”大于任何集合的势:它比任何真无穷更加无穷。这是康托尔悖论的悖论本质。


== 历史注释 ==
== 历史注释 ==
第22行: 第22行:
*[[布拉利-福尔蒂悖论]]
*[[布拉利-福尔蒂悖论]]
*[[康托尔定理]]
*[[康托尔定理]]
*[[基数]]
*[[基数 (数学)|基数]]
*[[冯诺伊曼-博内斯-哥德尔集合论|von Neumann-Bernays-Gödel 集合论]]
*[[冯诺伊曼-博内斯-哥德尔集合论|von Neumann-Bernays-Gödel 集合论]]


第47行: 第47行:
*[https://web.archive.org/web/20060911144922/http://www.u.arizona.edu/~miller/finalreport/node3.html An Historical Account of Set-Theoretic Antinomies Caused by the Axiom of Abstraction Justin T Miller]
*[https://web.archive.org/web/20060911144922/http://www.u.arizona.edu/~miller/finalreport/node3.html An Historical Account of Set-Theoretic Antinomies Caused by the Axiom of Abstraction Justin T Miller]
*http://planetmath.org/encyclopedia/CantorsParadox.html {{Wayback|url=http://planetmath.org/encyclopedia/CantorsParadox.html |date=20051211160822 }}
*http://planetmath.org/encyclopedia/CantorsParadox.html {{Wayback|url=http://planetmath.org/encyclopedia/CantorsParadox.html |date=20051211160822 }}

{{数理逻辑}}


[[Category:集合论悖论|Cantor's paradox]]
[[Category:集合论悖论|Cantor's paradox]]

2023年8月22日 (二) 23:13的最新版本

数学中,康托尔悖论集合论的一个定理,即没有最大的基数,所以“无限大小”的搜集自身是无限的。进一步的,从这个事实得出这个搜集不是集合而是真类;在von Neumann-Bernays-Gödel集合论中从这个事实得出大小限制公理,即这个真类和所有集合的集合之間存在雙射。所以,不只是有无限多个无限,而是这个无限大于无限的任何枚举。

这个悖论以德國數學家格奥尔格·康托尔命名,他在1899年(或在1895年到1897年之间)首先提出了它。像多数数学悖论一样,它实际上不是矛盾,而是在关于无限本质和集合概念的情况下错误直觉的体现。换个方式说,它在朴素集合论中的确是悖论,從而证实了这个理论对数学發展的需要是不充足的。在其後的各個公理化集合論中,這個悖論已經被解決。

陈述和证明

[编辑]

为了陈述这个悖论必须理解容许排序的基数,因此你可以谈论一个事物大于或小于另一个。则康托尔悖论是:

定理:没有最大的基数。

这个事实上是康托尔定理的直接结论,該定理的內容是关于一个集合的幂集的势。

证明: 假定相反情况,并设 C 为最大基数。则(在冯·诺伊曼基数指派中)C 是一个集合因此有幂集 2C,通过康托尔定理,它有严格的大于 C 的势。但根據定义 C 的势已經是最大的了,所以得出矛盾。因此,不存在最大的基数。

参见 A. Garciadiego 的《BERTRAND RUSSELL AND THE ORIGINS OF THE SET-THEORETIC 'PARADOXES》,其中包括了这不是悖论和康托尔不认为这是悖论的有關探討。

讨论和结论

[编辑]

因为基数是通过序数标定(indexing)而是良序的,(参见基数 (数学) § 基數序列及連續統假設),这也确立了没有最大序数;反过来,后者陈述蕴涵了康托尔悖论。通过应用这个标定到布拉利-福尔蒂悖论,我们还總結出基数们是真类而不是集合,而(至少在 von Neumann-Bernays-Gödel 集合论中)由此可知,存在基数的类和所有集合的类之间的双射。因为所有集合是后者这个类的子集,而所有势都是一个集合的势(根據定义),直觉上這就是說基数的搜集的“势”大于任何集合的势:它比任何真无穷更加无穷。这是康托尔悖论的悖论本质。

历史注释

[编辑]

尽管通常认定康托尔是第一个提出基数集合的这个性质的人,有些数学家认為这个贡献是伯兰特·罗素做出的,他在1899年或1901年定义了类似的定理。

参见

[编辑]

參考文獻

[编辑]

外部链接

[编辑]