|
|
第47行: |
第47行: |
|
[[Category:欧几里得对称]] |
|
[[Category:欧几里得对称]] |
|
|
|
|
|
|
[[cs:Dihedrální grupa]] |
|
[[de:Diedergruppe]] |
|
[[de:Diedergruppe]] |
|
[[en:Dihedral group]] |
|
[[en:Dihedral group]] |
2010年7月15日 (四) 19:52的版本
在數學中,二面體群 是正 邊形的對稱群,具有 個元素。某些書上則記為 。除了 的情形外, 都是非交換群。
生成元與關係
抽象言之,首先考慮 階循環群 。反射 是 上的自同構,而且 。定義二面體群為半直積
任取 的生成元 , 由 生成,其間的關係是
的元素均可唯一地表成 ,其中 ,。
幾何詮釋
二面體群也可以詮釋為二維正交群 中由
- (旋轉 弧度)
- (對 x 軸反射)
生成的子群。由此不難看出 是正 n 邊形的對稱群。
性質
- 的中心在 為奇數時是 ,在 為偶數時是 。
- 當 為奇數時, 同構於 與二階循環群的直積。同構可由下式給出:
其中 ,。
- 當 為奇數時, 的所有反射(即:二階元素)彼此共軛;當 為偶數,則反射元在共軛作用下分解成兩個軌道;從幾何方面解釋,二者差意在於反射面是否通過正 邊形的頂點。
- 若 ,則 ,由此可導出 共有 個子群,其中的算術函數 與 分別代表 的正因數個數與正因數之和。
表示
當 為奇數時, 有兩個一維不可約表示:
當 為偶數時, 有四個一維不可約表示:
其餘不可約表示皆為二維,共有 個,形如下式:
其中 是任一 n 次本原單位根, 過 。由 給出的表示相等價若且唯若 。
文獻