跳转到内容

光合作用:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
WikitanvirBot留言 | 贡献
r2.7.1) (機器人 新增: ext:Fotosíntesi
第105行: 第105行:
他们将培养出来的[[藻]],放置在含有未标记CO<sub>2</sub>的密闭容器中,然后将C<sup>14</sup>标记的CO<sub>2</sub>注入容器,培养相当短时间后,将[[藻]]浸入热的[[乙醇]]中杀死[[细胞]],使[[细胞]]中的[[酶]]变性而失效。接着他们提取到溶液里的[[分子]]。然后将提取物应用双向纸层析法,分离各种化合物,再通过放射自显影,分析放射性上面的斑点,并与已知化学成份比较。
他们将培养出来的[[藻]],放置在含有未标记CO<sub>2</sub>的密闭容器中,然后将C<sup>14</sup>标记的CO<sub>2</sub>注入容器,培养相当短时间后,将[[藻]]浸入热的[[乙醇]]中杀死[[细胞]],使[[细胞]]中的[[酶]]变性而失效。接着他们提取到溶液里的[[分子]]。然后将提取物应用双向纸层析法,分离各种化合物,再通过放射自显影,分析放射性上面的斑点,并与已知化学成份比较。


卡尔文在实验中发现,标记有C<sup>14</sup>的CO<sub>2</sub>很快就能转变成有机物。在几秒钟内,层析纸上就出现放射性斑点,经与已知化学物比较,斑点中的化学成分是[[磷酸甘油酸]](3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子,所以将这种CO<sub>2</sub>固定途径称为C<sub>3</sub>途径,将通过这种途径固定CO<sub>2</sub>的植物称为C<sub>3</sub>植物。后来研究还发现,CO<sub>2</sub>固定的C<sub>3</sub>途径是一个循环过程。人们称之为C<sub>3</sub>循环。这一循环又称「'''卡尔文循环'''」。
卡尔文在实验中发现,标记有C<sup>14</sup>的CO<sub>2</sub>很快就能转变成有机物。在几秒钟内,层析纸上就出现放射性斑点,经与已知化学物比较,斑点中的化学成分是[[3-磷酸甘油酸]](3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子,所以将这种CO<sub>2</sub>固定途径称为C<sub>3</sub>途径,将通过这种途径固定CO<sub>2</sub>的植物称为C<sub>3</sub>植物。后来研究还发现,CO<sub>2</sub>固定的C<sub>3</sub>途径是一个循环过程。人们称之为C<sub>3</sub>循环。这一循环又称「'''卡尔文循环'''」。


C<sub>3</sub>类植物,如[[米]]和[[麦]],[[二氧化碳]]经[[气孔]]即如叶片后,直接进入叶肉进行卡尔文循环。而C<sub>3</sub>植物的维管束鞘[[细胞]]很小,不含或含很少[[叶绿体]],卡尔文循环不在这里发生。
C<sub>3</sub>类植物,如[[米]]和[[麦]],[[二氧化碳]]经[[气孔]]即如叶片后,直接进入叶肉进行卡尔文循环。而C<sub>3</sub>植物的维管束鞘[[细胞]]很小,不含或含很少[[叶绿体]],卡尔文循环不在这里发生。

2011年3月31日 (四) 09:16的版本

綠色的,進行光合作用的重要場所

光合作用植物藻類和某些細菌利用葉綠素,在的照射下,將二氧化碳或是硫化氢轉化為碳水化合物。光合作用可分为產氧光合作用(oxygenic photosynthesis)和不產氧光合作用(anoxygenic photosynthesis)。植物之所以被称为食物链生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是他們賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。

发现

扬·巴普蒂斯塔·范·海尔蒙特

原理

光合作用分解水释放出O2并将CO2转化成糖类

植物與動物不同,它們沒有消化系統,因此它們必須依靠其他的方式來進行對營養的攝取。就是所谓的自养生物。對於綠色植物來説,在陽光充足的白天,它們將利用陽光的能量來進行光合作用,以獲得生長發育必需的養分。

這個過程的關鍵參與者是内部的葉綠体。葉綠体在陽光的作用下,把經由氣孔進入葉子内部的二氧化碳和由根部吸收的轉變成爲葡萄糖,同時釋放氧氣:

12H2O + 6CO2 + 陽光 → (與葉綠素產生化學作用); C6H12O6 (葡萄糖) + 6O2 + 6H2O

注意:上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都下写上水分子,或者在右边的水分子右上角打上星号。

12H2O + 陽光 → 12H2 + 6O2 [光反應]

12H2 (來自光反應) + 6CO2 → C6H12O6 (葡萄糖) + 6H2O [暗反应]

植物的光合作用可分为光反应和暗反应两个步骤如下:

光反应

光合作用的循環圖
  • 场所:類囊體
  • 影响因素:光强度,水分供给
  • 过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始,一二的命名则是按其发现顺序)在光照的情况下,分别吸收700nm和680nm波长的光子,作为能量,将从水分子光解过程中得到电子不断传递,其中还有细胞色素b6/f的参与,最后传递给辅酶NADP,通过铁氧还蛋白-NADP还原酶将NADP还原为NADPH。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP带走。一分子NADP可携带两个氢离子。这个NADPH+H离子则在暗反应里面充当还原剂的作用。
  • 意义:
  1. 光解水,产生氧气。
  2. 将光能转变成化学能,产生ATP,为暗反应提供能量。
  3. 利用水光解的产物氢离子,合成NADPH及H离子,为暗反应提供还原剂。

詳細過程如下:

光系統由多種色素組成,如葉綠素a(Chlorophyll a)、葉綠素b(Chlorophyll b)、類胡蘿蔔素(Carotenoids)等組成。既拓寬了光合作用的作用光譜,其他的色素也能吸收過度的強光而產生所謂的光保護作用(Photoprotection)。在此系統裡,當光子打到系統裡的色素分子時,會如圖片[1]所示一般,電子會在分子之間移轉,直到反應中心為止。反應中心有兩種,光系統一吸收光譜於700nm達到高峰,系統二則是680nm為高峰。反應中心是由葉綠素a及特定蛋白質所組成(這邊的葉綠素a是因為位置而非結構特殊),蛋白質的種類決定了反應中心吸收之波長。反應中心吸收了特定波長的光線後,葉綠素a激發出了一個電子,而旁邊的酵素使水裂解成氫離子和氧原子,多餘的電子去補葉綠素a分子上的缺。然後葉綠素a透過如圖所示的過程,生產ATP與NADPH分子,過程稱之為電子傳遞鏈(Electron Transport Chain)。

電子傳遞鏈分為兩種,循環(cyclic)和非循環(noncyclic)

非循環電子傳遞鏈

非循環電子傳遞鏈過程大致如下:

電子從光系統2出發。

光系統2初級接受者(Primary acceptor)→質體醌(Pq)→細胞色素複合體(Cytochrome Complex)→質體藍素(含銅蛋白質,Pc)→光系統1→初級接受者→鐵氧化還原蛋白(Fd)→NADP+還原酶(NADP+ reductase)

非循環電子傳遞鏈從光系統2出發,會裂解水,釋出氧氣,生產ATP與NADPH。

循環電子傳遞鏈

循環電子傳遞鏈的過程如下:

電子從光系統1出發。

光系統1→初級接受者(Primary acceptor)→鐵氧化還原蛋白(Fd)→細胞色素複合體(Cytochrome Complex)→質體藍素(含銅蛋白質)(Pc)→光系統1

循環電子傳遞鏈不會產生氧氣,因為電子來源並非裂解水。最後會生產出ATP。

非循環電子傳遞鏈中,細胞色素複合體會將氫離子打到類囊體(Thylakoid)裡面。高濃度的氫離子會順著高濃度往低濃度的地方流這個趨勢,像類囊體外擴散。但是類囊體膜是雙層磷脂膜(Phospholipid dilayer),對於氫離子移動的阻隔很大,它只能通過一種叫做ATP合成酶(ATP Synthase)的通道往外走。途中正似水壩裡的水一般,釋放它的位能。經過ATP合成酶時會提供能量、改變它的形狀,使得ATP合成酶將ADP和磷酸合成ATP。

NADPH的合成沒有如此戲劇化,就是把送來的電子與原本存在於基質內的氫離子與NADP+合成而已。

值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此當ATP不足時,相對來說會造成NADPH的累積,會刺激循環式電子流之進行。

固碳作用

植物細胞中的葉緑体。

固碳作用实质上是一系列的酶促反应。生物界有几种固碳方法,主要是卡尔文循环,但并非所有行光合作用的细胞都使用卡尔文循环进行碳固定,例如绿硫细菌会使用还原性三羧酸循环绿曲挠菌Chloroflexus)会使用3-羟基丙酸途径(3-Hydroxy-Propionate pathway),还有一些生物会使用核酮糖-单磷酸途径(Ribolose-Monophosphate Pathway)和丝氨酸途径(Serin Pathway)进行碳固定。

  • 场所:叶绿体基质
  • 影响因素:温度,二氧化碳浓度
  • 过程:不同的植物,固碳作用的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。固碳作用可分为C3,C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。

卡爾文循環

卡尔文循环是光合作用裡暗反应的一部分。反应场所为叶绿体内的基质。循环可分为三个阶段:羧化还原和二磷酸核酮糖的再生。大部分植物,会将吸收到的一分子二氧化碳,通过一种叫「二磷酸核酮糖羧化酶」的作用,整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此过程称为二氧化碳的固定。这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。但这种六碳化合物極不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。后者被在光反应中生成的NADPH+H还原,此过程需要消耗ATP。产物是3-磷酸丙糖。后来经过一系列复杂的生化反应,一个原子,将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。循环运行六次,生成一分子的葡萄糖

各类植物的光合作用

C3类植物

二战后,美国加州大学柏克萊分校的马尔文·卡尔文与其同事们研究一种名叫Chlorella的,以确定植物在光合作用中如何固定CO2。此时C14示踪技术和双向纸层析法技术都已成熟,卡尔文正好在实验中用上此两种技术。

他们将培养出来的,放置在含有未标记CO2的密闭容器中,然后将C14标记的CO2注入容器,培养相当短时间后,将浸入热的乙醇中杀死细胞,使细胞中的变性而失效。接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法,分离各种化合物,再通过放射自显影,分析放射性上面的斑点,并与已知化学成份比较。

卡尔文在实验中发现,标记有C14的CO2很快就能转变成有机物。在几秒钟内,层析纸上就出现放射性斑点,经与已知化学物比较,斑点中的化学成分是3-磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子,所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO2的植物称为C3植物。后来研究还发现,CO2固定的C3途径是一个循环过程。人们称之为C3循环。这一循环又称「卡尔文循环」。

C3类植物,如二氧化碳气孔即如叶片后,直接进入叶肉进行卡尔文循环。而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。

C4类植物

C4类植物

1960年代,澳洲科学家哈奇(M. D. Hatch)和斯莱克(C. R. Slack)发现玉米甘蔗等热带绿色植物,除了和其他绿色植物一样,具有卡尔文循环外,CO2首先通过一条特别的途径被固定。这条途径也被称为「哈奇-斯莱克途径」。

C4植物主要是一些生活在干旱热带地区的植物。在这种环境中,植物倘长时间开放气孔吸收二氧化碳,会导致水分通过蒸腾作用过快的流失。所以,植物只能短时间开放气孔二氧化碳摄入量必然少。植物必须利用这少量的二氧化碳进行光合作用,合成自身所需物质。

在C4植物叶片维管束的周围,有维管束鞘围绕,这些维管束鞘含有叶绿体,但里面并无基粒或发育不良。在这里,主要进行卡尔文循环。

其叶肉细胞中,含有独特的,即磷酸烯醇式丙酮酸羧基化酶,使得二氧化碳先被一种三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草酰乙酸,这也是该暗反应类型名称的由来。这草酰乙酸在转变为苹果酸盐后,进入维管束鞘,就会分解释放二氧化碳和一分子丙酮酸。二氧化碳进入卡尔文循环,后同C4进程。而丙酮酸则会被再次合成磷酸烯醇式丙酮酸。此过程消耗ATP

该类型的优点是,二氧化碳固定效率比C3高很多,有利植物在干旱环境生长。C3植物行光合作用所得的淀粉,会贮存在叶肉细胞中,因为这是卡尔文循环的场所,而维管束鞘细胞则不含叶绿体。而C4植物的淀粉,将会贮存于维管束鞘细胞内,因为C4植物的卡尔文循环是在此发生的。

景天酸代謝植物

景天酸代謝(crassulacean acid metabolism, CAM): 如果说C4植物是空间上错开二氧化碳的固定和卡尔文循环的话,那景天酸循環就是时间上错开这两者。行使这一途径的植物,是那些有着膨大肉质叶子的植物,如凤梨。这些植物晚上开放气孔,吸收二氧化碳,同样经哈奇-斯莱克途径将CO2固定。早上的时候气孔关闭,避免水分流失过快。同时在叶肉细胞中進行卡尔文循环。这些植物二氧化碳的固定效率也很高。

意义:二氧化碳的固定,使得原本化学性质不活泼的二氧化碳,化学活性增加,以利于被还原,最后合成葡萄糖。

藻類和細菌

真核藻類,如紅藻綠藻褐藻等,和植物一樣具有叶绿体,也能夠進行產氧光合作用。光被葉綠素吸收,而很多藻類的葉綠體中還具有其它不同的色素,賦予了它們不同的顔色。

進行光合作用的細菌不具有葉綠體,而直接由細胞本身進行。屬於原核生物的藍藻(或者稱“藍細菌”)同樣含有葉綠素,和葉綠體一樣進行產氧光合作用。事實上,目前普遍認爲葉綠體是由藍藻演化而來的。其它光合細菌具有多種多樣的色素,稱作細菌葉綠素或菌綠素,但不氧化水生成氧氣,而以其它物質(如硫化氫氫氣)作爲電子供体。不產氧光合細菌包括紫硫細菌紫非硫細菌綠硫細菌綠非硫細菌太陽桿菌等。

研究意义

研究光合作用,对农业生产,环保等领域起着基础指导的作用。知道光反应暗反应的影响因素,可以趋利避害,如建造温室,加快空气流通,以使农作物增产。人们又了解到二磷酸核酮糖羧化酶的两面性,即既催化光合作用,又会推动光呼吸,正在尝试对其进行改造,减少后者,避免有机物和能量的消耗,提高农作物的产量。

当了解到光合作用与植物呼吸的关系后,人们就可以更好的布置家居植物摆设。比如晚上就不应把植物放到室内,以避免因植物呼吸而引起室内氧气浓度降低。

参看

外部链接

Template:Link FA Template:Link FA Template:Link GA