跳转到内容

User:Hmgqzx/sandboxII:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Hmgqzx留言 | 贡献
Hmgqzx留言 | 贡献
第403行: 第403行:
{{See|Timeline of 演化的 history of 生命}}
{{See|Timeline of 演化的 history of 生命}}
====.====
====.====
The 演化的 history of 生命 stretches back to over {{ma|3000|}}, possibly as far as {{ma|3800}}. [[地球]] formed about {{ma|4570}} and, after a collision that formed the [[月球]] about 40 million years later, may have cooled quickly enough to have oceans and an atmosphere about {{ma|4440}}.<ref>* {{Cite web| title = Early 地球 Likely Had 大陆s And Was Habitable | date = 2005-11-17 | url = http://www.colorado.edu/news/releases/2005/438.html }}<br/>* {{Cite journal
生命的演化历史可以追溯到比{{ma|3000|}}更早, 可能远至{{ma|3800}}. [[地球]]在大约{{ma|4570}}形成 and, after a collision that [[月球]] 在大约40 million years later形成, 也许在约{{ma|4440}}能冷却得足够快以形成大气层和海洋.<ref>* {{Cite web| title = Early 地球 Likely Had 大陆s And Was Habitable | date = 2005-11-17 | url = http://www.colorado.edu/news/releases/2005/438.html }}<br/>* {{Cite journal
| last = Cavosie | first = A. J. | coauthors = J. W. Valley, S. A., Wilde, and E.I.M.F. | date = July 15, 2005
| last = Cavosie | first = A. J. | coauthors = J. W. Valley, S. A., Wilde, and E.I.M.F. | date = July 15, 2005
| title = Magmatic δ<sup>18</sup>O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean
| title = Magmatic δ<sup>18</sup>O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean
第409行: 第409行:
| doi = 10.1016/j.epsl.2005.04.028
| doi = 10.1016/j.epsl.2005.04.028
| url = http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-4GDKB05-3&_coverDate=07%2F15%2F2005&_alid=382434001&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5801&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=be47e49c535d059be188b66c6e596dd5 | bibcode=2005E&PSL.235..663C
| url = http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-4GDKB05-3&_coverDate=07%2F15%2F2005&_alid=382434001&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5801&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=be47e49c535d059be188b66c6e596dd5 | bibcode=2005E&PSL.235..663C
}}</ref> However there is 证据 on the 月球 of a [[后期重轰炸期]] from {{ma|4000|3800}}. If, as seem likely, such a bombardment struck 地球 at the same time, the first atmosphere and oceans may have been stripped away.<ref>{{Cite journal
}}</ref> 然而有证据显示月球 from {{ma|4000|3800}}有一个[[后期重轰炸期]]. 如果, as seem likely, 当时在地球也有这样的轰炸, 首次出现的大气层和海洋也许会被剥夺掉。<ref>{{Cite journal
| author=Dauphas, N., Robert, F., and Marty, B. | month=December | year=2000
| author=Dauphas, N., Robert, F., and Marty, B. | month=December | year=2000
| title=The Late Asteroidal and Cometary Bombardment of 地球 as Recorded in Water Deuterium to Protium Ratio
| title=The Late Asteroidal and Cometary Bombardment of 地球 as Recorded in Water Deuterium to Protium Ratio
| journal=Icarus | issue=2 | pages=508–512 | doi=10.1006/icar.2000.6489 | volume=148 | bibcode=2000Icar..148..508D
| journal=Icarus | issue=2 | pages=508–512 | doi=10.1006/icar.2000.6489 | volume=148 | bibcode=2000Icar..148..508D
}}</ref> The oldest clear 证据 of 生命 on 地球 dates to {{ma|3000}}, although there have been reports, often disputed, of [[化石]] [[细菌]] from {{ma|3400}} and of 地球化学的 证据 for the presence of 生命 {{ma|3800}}.<ref name="BrasierMcLoughlinEtAl2006FreshLook"/><ref>{{Cite journal|author=Schopf, J. |title=化石 证据 of Archaean 生命 |journal=Philos Trans R Soc Lond B Biol Sci |volume=361 |issue=1470 |pages=869–85 |year=2006 |pmid=16754604 |doi=10.1098/rstb.2006.1834 |pmc=1578735
}}</ref> 最早的 明确的 关于地球上的生命 证据 dates to {{ma|3000}},( 尽管已经reports, 但仍常有争议), {{ma|3400}}的[[细菌]][[化石]] 地球化学中关于生命出现的证据 {{ma|3800}}.<ref name="BrasierMcLoughlinEtAl2006FreshLook"/><ref>{{Cite journal|author=Schopf, J. |title=化石 证据 of Archaean 生命 |journal=Philos Trans R Soc Lond B Biol Sci |volume=361 |issue=1470 |pages=869–85 |year=2006 |pmid=16754604 |doi=10.1098/rstb.2006.1834 |pmc=1578735
}}</ref> Some scientists have proposed that 生命 on 地球 was [[泛种论|"seeded" from elsewhere]],<ref>* {{Cite journal
}}</ref> 一些科学家提议 that 地球上的生命[[泛种论|从其他地方播种而来]],<ref>* {{Cite journal
| author=Arrhenius, S. | title=The Propagation of 生命 in Space | year=1903
| author=Arrhenius, S. | title=The Propagation of 生命 in Space | year=1903
| journal=Die Umschau volume=7
| journal=Die Umschau volume=7
第431行: 第431行:
| last = Crick | first = F. H. | last2 = Orgel | first2 = L. E.| title = Directed 泛种论
| last = Crick | first = F. H. | last2 = Orgel | first2 = L. E.| title = Directed 泛种论
| journal = Icarus | volume = 19 | pages = 341–348 | year = 1973| doi = 10.1016/0019-1035(73)90110-3 | bibcode=1973Icar...19..341C
| journal = Icarus | volume = 19 | pages = 341–348 | year = 1973| doi = 10.1016/0019-1035(73)90110-3 | bibcode=1973Icar...19..341C
| issue = 3}}</ref> but most research concentrates on various explanations of how 生命 could have [[无生源说|arisen independently]] on 地球.<ref>{{Cite journal|author=Peretó, J. |title=Controversies on the origin of 生命 |url=http://www.im.microbios.org/0801/0801023.pdf |format=PDF |journal=Int. Microbiol. |volume=8 |issue=1 |pages=23–31 |year=2005 |pmid=15906258 |accessdate=October 7, 2007}}</ref>
| issue = 3}}</ref> 但大多数研究集中在 各种解释 of 生命如何能在地球上[[无生源说|自然出现]].<ref>{{Cite journal|author=Peretó, J. |title=Controversies on the origin of 生命 |url=http://www.im.microbios.org/0801/0801023.pdf |format=PDF |journal=Int. Microbiol. |volume=8 |issue=1 |pages=23–31 |year=2005 |pmid=15906258 |accessdate=October 7, 2007}}</ref>


[[File:Runzelmarken.jpg|thumb|250px|This wrinkled "elephant skin" texture is a [[遗迹化石]] of a non-[[叠层石]] [[微生物席]].<br />The image shows the location, in the [[Burgsvik beds]] of [[瑞典]], where the texture was first identified as 证据 of a 微生物席.<ref name="Manten1966">
[[File:Runzelmarken.jpg|thumb|250px|This wrinkled "elephant skin" texture is a [[遗迹化石]] of a non-[[叠层石]] [[微生物席]].<br />The image shows the location, in the [[Burgsvik beds]] of [[瑞典]], where the texture was first identified as 证据 of a 微生物席.<ref name="Manten1966">
第441行: 第441行:
}}
}}
</ref>]]
</ref>]]

====.====
====.====
For about 2,000 million years [[微生物席]]s, multi-layered colonies of different types of 细菌, were the 统治地位的 生命 on 地球.<ref name="KrumbeinBrehmEtAl2003BiofilmBiodictyonBiomatEtc">{{Cite book
For about 2,000 million years [[微生物席]]s, multi-layered colonies of different types of 细菌, were the 统治地位的 生命 on 地球.<ref name="KrumbeinBrehmEtAl2003BiofilmBiodictyonBiomatEtc">{{Cite book

2013年5月11日 (六) 08:32的版本

Template:古生物学 古生物学 or palaeontology (發音: /ˌplɪɒnˈtɒləi/, /ˌplɪənˈtɒləi/ or /ˌpælɪɒnˈtɒləi/, /ˌpælɪənˈtɒləi/) is the scientific study of 史前史生命. It includes the study of 化石s to determine 生命体s' 演变 and interactions with each other and their environments (their 古生态学). As a "历史学的 science" it attempts to explain 成因 rather than conduct experiments to observe effects. Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of 乔治·居维叶's work on 比较解剖学, and developed rapidly in the 19th century. The term itself originates from Greek: παλαιός (palaios) meaning "old, ancient," ὄν, ὀντ- (on, ont-), meaning "being, creature" and λόγος (logos), meaning "speech, thought, study".

f

古生物学处在生物学地质学的交界处,和考古学的边界更加是不易分辨。它现在广泛运用了其他科学支系的技术,包括生物化学数学以及工程学。借由这些技术,古生物学家去发现更多关于生命的进化历史的事情, almost all the way back to when 地球 became capable of supporting 生命, about 3,800百萬年前. 随着知识增加, 古生物学已经发展出更加专业的子分类 , 有些人专注于研究生物体 化石,有人研究生态学和有关环境的历史,如古气候学

f

实体化石 and 遗迹化石 are 主要证据 about 古生命, and 地球化学的证据已帮助破译 演变 of 生命 before 有足够大的 生命体s to 留下化石s.

估计现存化石的时期是必要的,但也难以实现: 有时 相邻的 地层允许使用放射性定年法, which provides absolute dates that are accurate to within 0.5%, 但更加经常的是古生物学家必须依靠 相对年龄测定 by 解决"拼图" of 生物地层学.

分类 古生命体也很困难, 因为许多生命体并不适用于生物分类法 that 普遍用来分类现在幸存的生命体, and 古生物学家 更加经常 使用 支序分类学 来 描绘出 演化的 "family trees".

(The final quarter of 20世纪)20世纪的前25年 见证了 分子系统发生学(Molecular phylogenetics)的发展, which 研究调查 生命体间的亲缘关系 by 测量他们的基因组中的DNA的相似度。

分子系统发生学 现用来 估计 物种 diverged 的时期 , but 有争议 about (这种估计所依赖的)分子钟的可靠性。

Overview

File:古生物学家 chipping.jpg
A 古生物学家 carefully chips rock from a column of 恐龙 vertebrae.
File:Joda 古生物学家.jpg
A palaeontologist at work at John Day 化石 Beds National Monument
The preparation of the 化石ized bones of Europasaurus holgeri

最简单的定义是"对古生命的研究".[1] 古生物学 寻找 几个方面的信息 of 过去的生命体s: "他们的特性和起源,他们的 环境and 演变, and what they can tell us about the 地球's organic and inorganic 过去".[2]

A 历史学的 science

古生物学是历史科学之一, along with 考古学, 地质学, 生物学, 天文学, 宇宙学, 语言学 and 历史学 它本身.[3] 这意味着它主要致力于 描述过去的现象 and 重现他们的成因.[4] 所以它主要有3个要素: 描述现象; 建立发展出统一的理论 about the 成因 of 各种类型的change; and 应用这些理论 to 特定事实.[3]

.

当试图解释过去的现象时, 古生物学家s and 其他的历史学家一样,通常是 建立 一连串假定 about the 成因 ,然后寻找确凿证据, a piece of 证据 that 表明s that 其中的一个假定比其他的假定能解释更好。有时 the 确凿证据 被发现 by 幸运的意外 during 其他研究时. 例如,发现 by 路易斯·沃尔特·阿尔瓦雷茨(Luis Alvarez) and 沃爾特·阿爾瓦雷茨 of an -rich layer at the 白垩纪第三纪 boundary 让 小行星撞击 and 火山作用 成为 最受喜爱的(favored)解释 for the 白垩纪-第三纪灭绝事件.[4]

f

另一种主要的科学形式-实验科学,which is often said to work by 设计实验s to 证明假定错误 about the workings and 成因 of 自然现象 – 注意 that 这种方法不能证明假定正确,因为往后可能有实验证明它错误。 然而,当面对完全意想不到的现象时, 例如 the first 证据 for 看不见的辐射, 实验科学家 通常使用相同的方法as 历史学家: 建立一连串假定 about the 成因 and 然后寻找一个 "确凿证据".[4]

f

古生物学 lies on the boundary between 生物学 and 地质学 since 古生物学 focuses on the record of past 生命 but its main source of 证据 is 化石s, which are found in rocks.[5] For 历史学的 reasons 古生物学 is part of the 地质学 系s of many universities, 因为在19世纪和20世纪早期,地质学系发现了估计岩层年代的重要古生物学证据 while 生物学系s showed little interest.[6]

f

古生物学也与考古学有一些重叠, which 主要 works with objects made by humans and with human remains, while 古生物学家s 感兴趣于 特性和演变 of 人类 as 生命体s. 当处理 证据 about 人类, 考古学家 and 古生物学家 可能会一起工作 – 例如, 古生物学家 might 识别 动物或植物的化石 around 考古遗址遗迹), to 发现 曾居住在此的人们吃了什么; or 他们 might 分析当时的气候 when 人类居住在此.[7]

File:化石 Tyranausaurus Rex at the Royal Tyrell Museum, Alberta, Canada.jpg
Analyses using 工程学 techniques show that 暴龙 had a devastating bite, but raise doubts about how fast it could move.

f

另外, 古生物学也经常使用其他学科的方法技术, 包括 生物学, 生态学, 化学, 物理学 and 数学.[1] 例如, 地球化学的 特征 from 岩石能 may 帮助 to 发现何时生命第一次出现 on 地球,[8] and 分析 of 同位素比 能帮助 to 确定气候 变化 and 甚至解释 主要的 transitions ,像二叠纪-三叠纪灭绝事件.[9] 一个相对较近的学科, 分子系统发生学, 常用来 重建 演化的 "family trees" by 使用比较 of 不同现代生命体s' DNA and RNA ; 它现在也被用来 估计 日期 of 重大演化的发展, 尽管这种方法仍有争议 because of 怀疑 about "分子钟"的可靠性.[10] 工程学中的技术 现在也被用来分析 古生命体可能是如何 worked 的, 例如 暴龙能移动多快 and 它的咬力有多大.[11][12]

f

A 组合 of 古生物学, 生物学, and 考古学, 古神经病学(paleoneurology) is the study of 颅腔模型 of 物种s related to humans to 了解人类大脑的演变 . [13]

古生物学 甚至 对 太空生物学有贡献, the 调查 of 可能存在的生命 on 其他行星, by 发展模型 of 生命如何出现 and by 提供技术方法 for 检测生命存在的证据 .[14]

Subdivisions

As knowledge has increased, 古生物学 has developed specialised subdivisions.[15] 古脊椎动物学 concentrates on 化石s of 脊椎动物, from the earliest 鱼类 to the immediate ancestors of modern 哺乳动物s. 古无脊椎动物学 deals with 化石s of 无脊椎动物s such as molluscs, arthropods, annelid worms and 棘皮动物s. 古植物学 focuses on the study of 化石 plants, but traditionally includes the study of 化石 algae and fungi. 孢粉学, the study of pollen and spores produced by land plants and protists, straddles the border between 古生物学 and botany, as it deals with both living and 化石 生命体s. Micro古生物学 deals with all microscopic 化石 生命体s, regardless of the group to which they belong.[16]

.

Instead of focusing on individual 生命体s, 古生态学 examines the interactions between different 生命体s, such as their places in 食物链s, and the two-way interaction between 生命体s and their environment[17] – for example the development of oxygenic photosynthesis by 细菌 hugely increased the productivity and diversity of ecosystems,[18] and also caused the oxygenation of the atmosphere, which in turn was a prerequisite for the 演变 of the most complex eucaryotic cells, from which all 多细胞 的生命体s are built.[19] 古气候学, although sometimes treated as part of 古生态学,[16] focuses more on the history of 地球's climate and the mechanisms that have changed it[20] – which have sometimes included 演变ary developments, for example the rapid expansion of land plants in the 泥盆纪 period removed more 二氧化碳 from the atmosphere, reducing the 温室效应 and thus helping to cause an 冰河时代 in the 石炭纪的 period.[21]

生物地层学, the use of 化石s to work out the chronological order in which rocks were formed, is useful to both 古生物学家s and geologists.[22] Biogeography studies the spatial distribution of 生命体s, and is also linked to 地质学, which explains how 地球's geography has changed over time.[23]

Sources of 证据

Body 化石s

File:Marrella (化石).png
This Marrella specimen illustrates how clear and detailed the 化石s from the Burgess Shale lagerstätte are.

化石s of 生命体s' 遗体 通常是最有益的证据类型. 最常见的类型是 木材, 骨头, and 贝壳.[24] 化石isation is a rare event, and most 化石s 被破坏 by 侵蚀 or 变质作用 before 他们能被 observed. Hence the 化石 record is very incomplete, increasingly so further back in time. Despite this, it is often adequate to illustrate the broader patterns of 生命's history.[25] There are also biases in the 化石 record: different environments are more favorable to the preservation of different types of 生命体 or parts of 生命体s.[26] Further, only the parts of 生命体s that were already 矿化的(mineralised) are usually preserved, such as the shells of molluscs. Since most 动物 物种s are soft-bodied, they decay before they can become 化石ised. As a result, although there are 30-plus phyla of living 动物s, two-thirds have never been found as 化石s.[27]

.

Occasionally, unusual environments may preserve soft tissues. These lagerstätten allow 古生物学家s to examine the internal anatomy of 动物s that in other 沉积(沉淀物)s are represented only by shells, spines, claws, etc. – if they are preserved at all. However, even lagerstätten present an incomplete picture of 生命 at the time. The majority of 生命体s living at the time are probably not represented because lagerstätten are restricted to a narrow range of environments, e.g. where soft-bodied 生命体s can be preserved very quickly by events such as mudslides; and the exceptional events that cause quick burial make it difficult to study the normal environments of the 动物s.[28] The sparseness of the 化石 record means that 生命体s are expected to exist long before and after they are found in the 化石 record – this is known as the Signor-Lipps effect.[29]

遗迹化石s

File:寒武纪Rusophycus.jpg
寒武纪 遗迹化石s including Rusophycus, made by a trilobite

遗迹化石s consist 主要 of 遗迹 and 洞穴, 也包括 粪化石s (化石 排泄物) and 进食后留下的痕迹.[24][30] 遗迹化石s are 特别有意义 because they represent a data source that is not limited to 动物s with easily 化石ized hard parts, and 他们反映了 生命体的行为习惯。 Also many traces date from significantly earlier than the body 化石s of 动物s that are thought to have been capable of making them.[31] 然而 精确分配 of 遗迹化石s to 他们的制造者 is 通常不可能, 但 遗迹 可能 for example 提供最早的物理证据 of the 外观 of (moderately)中度复杂的动物 (comparable to 地球worms).[30]

地球化学的 observations

f

地球化学的 观察结果 也许能帮助 to 推论 全球生物活性层次(the global level of biological activity), or the affinity of a certain 化石. For example 地球化学的 features of rocks 可能 揭露 生命 何时第一次出现在地球上,[8] and 可能提供 证据 of 真核细胞的 presence, 所有的多细胞生命体由此发展而来.[32] 分析 of 同位素比 也许能帮助解释 主要的 transitions ,像二叠纪-三叠纪灭绝事件.[9]

分类ing 古生命体s

.

Tetrapods

Amphibians

Amniotes
合弓纲s

Extinct 合弓纲s

   

哺乳动物s

Reptiles

Extinct reptiles

Lizards and snakes

古蜥s
 ? 

Extinct
古蜥s

Crocodilians

恐龙s
 ? 

Extinct
恐龙s


 ? 

鸟类s

Simple example cladogram
    Warm-bloodedness evolved somewhere in the
合弓纲–哺乳动物 transition.
 ?  Warm-bloodedness must also have evolved at one of
these points – an example of convergent 演变.[33]
Levels in the 生物分类法

f

命名 groups of 生命体s in a way (that 清晰且广泛同意) is 重要的, 因为引起古生物学的一些争论仅是因为名字上的误解。[34] 生物分类法 通常用来 分类 现在幸存的生命体s, but 陷入困难 when 处理 新发现的 生命体s that are 有显着性差异 from 已知物种.例如: 很难决定 at what level to place a new higher-level grouping, e.g. or family or order;这是重要的,因为 the Linnean rules for naming groups 与 their levels 相关联, and 因此如果一个 group 移动到一个不同的 level,它必须重新命名.[35]

.

古生物学家通常也使用支序分类学的方法, a 技术方法 for working out the 演化的 "family tree" of a set of 生命体s.[34] It works by the logic that, if groups B and C have more similarities to each other than either has to group A, then B and C are more closely related to each other than either is to A. Characters that are compared may be anatomical, such as the presence of a 脊索, or 分子, by comparing sequences of DNA or 蛋白质s. The result of a successful analysis is a hierarchy of clades – groups that share a common ancestor. Ideally the "family tree" has only two branches leading from each node ("junction"), but sometimes there is too little information to achieve this and 古生物学家s have to make do with junctions that have several branches. The cladistic technique is sometimes fallible, as some features, such as wings or camera eyes, evolved more than once, convergently – this must be taken into account in analyses.[33]

f

演化发展生物学, 通常缩写为 "Evo Devo", 也能帮助古生物学家 to produce "family trees". 例如 the 胚胎学的 development of 一些现代腕足动物 显示腕足动物也许是 the halkieriid的后代, which已在寒武纪时期灭绝。[36]

Estimating the dates of 生命体s

.

古生物学 seeks to map out how living things have changed through time. A substantial hurdle to this aim is the difficulty of working out how old 化石s are. Beds that preserve 化石s typically lack the radioactive elements needed for 放射性定年法. This technique is our only means of giving rocks greater than about 50 million years old an absolute age, and can be accurate to within 0.5% or better.[37] Although 放射性定年法 requires very careful laboratory work, its basic principle is simple: the rates at which various radioactive elements decay are known, and so the ratio of the radioactive element to the element into which it decays shows how long ago the radioactive element was incorporated into the rock. Radioactive elements are common only in rocks with a volcanic origin, and so the only 化石-bearing rocks that can be dated radiometrically are a few volcanic ash layers.[37]

.

Consequently, 古生物学家s must usually rely on 地层学 to date 化石s. 地层学 is the science of deciphering the "layer-cake" that is the 沉积(沉淀物)ary record, and has been compared to a 七巧板.[38] Rocks normally form relatively horizontal layers, with each layer younger than the one underneath it. If a 化石 is found between two layers whose ages are known, the 化石's age must lie between the two known ages.[39] Because rock sequences are not continuous, but may be broken up by faults or periods of 侵蚀, it is very difficult to match up rock beds that are not directly next to one another. However, 化石s of 物种s that survived for a relatively short time can be used to link up isolated rocks: this technique is called 生物地层学. For instance, the conodont Eoplacognathus pseudoplanus has a short range in the Middle Ordovician period.[40] If rocks of unknown age are found to have traces of E. pseudoplanus, they must have a mid-Ordovician age. Such index 化石s must be distinctive, be globally distributed and have a short time range to be useful. However, misleading results are produced if the index 化石s turn out to have longer 化石 ranges than first thought.[41] 地层学 and 生物地层学 can in general provide only relative dating (A was before B), which is often sufficient for studying 演变. However, this is difficult for some time periods, because of the problems involved in matching up rocks of the same age across different 大陆s.[42]

.

Family-tree relationships may also help to narrow down the date when lineages first appeared. For instance, if 化石s of B or C date to X million years ago and the calculated "family tree" says A was an ancestor of B and C, then A must have evolved more than X million years ago.

f

也有可能估计 多久之前 两个现存的演化支就已 diverged – 例如,它们最后的共同祖先大约多久前肯定还存在 – by 假设 that DNA 突变以恒定速率累积. These "分子钟s", 然而, 是不可靠的, and 只提供非常粗略的时间: 例如,它们没能足够精确和可靠地去估计 在何时 the groups that feature in the 寒武纪大爆发 first evolved,[43] and (?)-不同技术中也许会因为某个因素变化,令估计结果不同(produced by different techniques may vary by a factor of two)[10]

Overview of the history of 生命

.

生命的演化历史可以追溯到比3,000百萬年前更早, 可能远至3,800百萬年前. 地球在大约4,570百萬年前形成 and, after a collision that 月球 在大约40 million years later形成, 也许在约4,440百萬年前能冷却得足够快以形成大气层和海洋.[44] 然而有证据显示月球 from 4,000 to 3,800 百萬年前有一个后期重轰炸期. 如果, as seem likely, 当时在地球也有这样的轰炸, 首次出现的大气层和海洋也许会被剥夺掉。[45] 最早的 明确的 关于地球上的生命 的证据 dates to 3,000百萬年前,( 尽管已经reports, 但仍常有争议), 3,400百萬年前细菌化石 和 地球化学中关于生命出现的证据 。3,800百萬年前.[8][46] 一些科学家提议 that 地球上的生命是从其他地方播种而来,[47] 但大多数研究集中在 各种解释 of 生命如何能在地球上自然出现.[48]

This wrinkled "elephant skin" texture is a 遗迹化石 of a non-叠层石 微生物席.
The image shows the location, in the Burgsvik beds of 瑞典, where the texture was first identified as 证据 of a 微生物席.[49]

.

For about 2,000 million years 微生物席s, multi-layered colonies of different types of 细菌, were the 统治地位的 生命 on 地球.[50] The 演变 of oxygenic photosynthesis enabled them to play the major role in the oxygenation of the atmosphere[51] from about 2,400百萬年前. This change in the atmosphere increased their effectiveness as nurseries of 演变.[52] While 真核细胞s, cells with complex internal structures, may have been present earlier, their 演变 speeded up when they acquired the ability to transform oxygen from a 毒物 to a powerful source of energy in their 新陈代谢. This innovation may have come from primitive 真核细胞s capturing oxygen-powered 细菌 as 内共生体s and transforming them into 细胞器s called mitochondria.[53] The earliest 证据 of complex 真核细胞s with 细胞器s such as mitochondria, dates from 1,850百萬年前.[19]

.

多细胞的 生命 is composed only of eukaryotic cells, and the earliest 证据 for it is the Francevillian Group 化石s from 2,100百萬年前,[54] although specialization of cells for different functions first appears between 1,430百萬年前 (a possible 真菌) and 1,200百萬年前 (a probable red alga). 有性生殖 may be a prerequisite for specialization of cells, as an asexual 多细胞的 生命体 might be at risk of being taken over by rogue cells that retain the ability to reproduce.[55][56]

.

File:欧巴宾海蝎 BW2.jpg
欧巴宾海蝎 made the largest single contribution to modern interest in the 寒武纪大爆发.

已知的最早的动物 are 刺细胞动物ns from about 580百萬年前, but these are so modern-looking that the earliest 动物s must have appeared before then.[57] 早期的动物化石很稀少,因为它们没有 develop mineralized hard parts that 化石ize easily until 约548百萬年前.[58] 最早的 modern-looking 两侧对称动物n 动物s 出现在寒武纪早期, along with several "weird wonders" that bear little obvious resemblance to any modern 动物s. There is a long-running debate about whether this 寒武纪大爆发 was truly a very rapid period of 演化的 experimentation; alternative views are that modern-looking 动物s began evolving earlier but 化石s of their precursors have not yet been found, or that the "weird wonders" are 演化的 "aunts" and "cousins" of modern groups.[59] 脊椎动物 remained an obscure group until 第一条有颌的鱼在奥陶纪后期出现。[60][61]

.

生命从水生到陆生 需要 生命体s to 解决数个问题, 包括对drying out的防护 and 支持他们自身对抗重力[62][63][64](?)-最早的证据 of 陆生植物and 陆生无脊椎动物 大约从476百萬年前490百萬年前开始各自出现.[63][65] The lineage that produced 陆生脊椎动物 evolved later but very rapidly( between370百萬年前 and 360百萬年前);[66] recent discoveries have overturned earlier ideas about the history and driving forces behind their 演变.[67] 陆生植物 were 如此成功 that 以至于他们造成了一场 生态危机 in 泥盆纪后期, until the 演变 and spread of fungi that could digest dead wood.[21]

f

At about 13厘米(5.1英寸) the Early 白垩纪 Yanoconodon was longer than the average 哺乳动物 of the time.[68]
s are the last surviving 恐龙s.[69]

二叠纪时期合弓纲,包括哺乳动物的祖先,可能已经统治支配了陆地环境,[70]二叠纪-三叠纪灭绝事件 251百萬年前 到来 very close to 擦掉 复杂的生命.[71] 这场灭绝显然非常突然,至少对于脊椎动物来说。[72] 在从这场灾难缓慢恢复的过程中, a previously obscure group, 古蜥s, became 最丰富和多样化的陆生脊椎动物. One 古蜥 group,恐龙, were 统治地位的陆生脊椎动物 for the rest of the 中生代,[73] and 鸟类 进化出来 from one group of 恐龙.[69] 这一时期幸存的哺乳动物的祖先只有小的、主要在夜间活动的食虫动物, but this apparent set-back may have accelerated the development of 哺乳动物ian traits such as 温血性 and 毛发.[74] (65百萬年前)白垩纪-第三纪灭绝事件之后, 杀掉非鸟类的恐龙s – 鸟类是唯一仅存的恐龙s – 哺乳动物 迅速增长 in 大小和多样性,and(?)-一些接管了天空和海洋。[some took to the air and the sea].[75][76][77]

f

A modern 社会性昆虫 collects pollen from a modern 开花植物.

化石 证据 表明s that 开花植物s 出现 and 迅速多样化 in白垩纪早期, between 130百萬年前 and 90百萬年前.[78] 它们迅速增加,统治了陆地生态系统,被认为是与传粉昆虫的共同演变推动所致。[79] 社会性昆虫在大约相同的时期出现 and, 尽管它们的数量在 昆虫"family tree" 占很小一部分, 但现在在整个昆虫群中的构成了超过50%.[80]

.

Humans evolved from a lineage of upright-walking s whose earliest 化石s date from over 6百萬年前.[81] Although early members of this lineage had 黑猩猩-sized s, about 25% as big as modern humans', there are signs of a steady increase in 脑 size after about 3百萬年前.[82] There is a long-running debate about whether modern humans are descendants of a single small population in Africa, which then migrated all over the world less than 200,000 years ago and replaced previous 有人类特征的 物种s, or arose worldwide at the same time as a result of 杂种繁殖.[83]

生物集群灭绝

Template:Annotated image/灭绝

至少从542百萬年前开始,地球上的生命就已遭受过偶然发生的生物集群灭绝。尽管这是当时的灾难,但生物集群灭绝有时能加速地球上的生命的演化。 When dominance of particular 生态位s passes from one group of 生命体s to another, it is rarely because the new 统治地位的 group is "superior" to the old and 通常是因为一场灭绝事件消除了占统治地位的 the old group and 为new one 辟开了新道路。[84][85]

f

化石记录似乎显示灭绝的速度正在缓慢下来, with both 生物集群灭绝间的距离越来越长 and the average and background rates of 灭绝 正在减少。 然而并不确定真正的灭绝速度已经改变,因为这两个观察结果能以如下几个方式解释:[86]

.

  • The oceans may have become more hospitable to 生命 over the last 500 million years and less vulnerable to 生物集群灭绝: 溶解氧 became more widespread and penetrated to greater depths; the development of 生命 on land reduced the run-off of nutrients and hence the risk of 富营养化 and 缺氧事件s; marine ecosystems became more diversified so that 食物链s were less likely to be disrupted.

[87][88]

f

  • Reasonably 完整的化石非常稀少,大多数灭绝的生命体 are represented only by 局部化石s, and 在最老的岩层中,完整的化石是最少的。所以古生物学家肯定会错误地分配一些相同生命体的不同部分到不同的genera, ?[为了容纳这些发现,通常单独定义出一个genera]。 – 奇虾的故事可以作为一个例子。

[89]

.

The risk of this mistake is higher for older 化石s because these are often unlike parts of any living 生命体. Many "superfluous" genera are represented by fragments that are not found again, and these "superfluous" genera appear to become extinct very quickly.[86]

Template:Phanerozoic 生物多样性

f

化石记录中的生物多样性, which is

"the number of distinct genera alive at any given time; that is, those whose first occurrence predates and whose last occurrence postdates that time"[90]

显示了一个不同的趋势: a 相当迅速的增加 from 542 to 400 百萬年前, a 轻微的下降 from 400 to 200 百萬年前(其中灭绝性的二叠纪-三叠纪灭绝事件 是重要因素之一), and a 迅速的增加 从200百萬年前至今.[90]

History of 古生物学

This illustration of an Indian elephant jaw and a mammoth jaw (top) is from Cuvier's 1796 p猿r on living and 化石 elephants.

Although 古生物学 became established around 1800, earlier thinkers had noticed aspects of the 化石 record. The ancient Greek philosopher 色诺芬尼 (570–480 BC) concluded from 化石 sea shells that some areas of land were once under water.[91] During the 中世纪 the Persian naturalist Ibn Sina, known as Avicenna in Europe, discussed 化石s and proposed a theory of petrifying fluids on which Albert of Saxony elaborated in the 14th century.[92] The Chinese naturalist Shen Kuo (1031–1095) proposed a theory of climate change based on the presence of petrified bamboo in regions that in his time were too dry for bamboo.[93]

.

In early modern Europe, the systematic study of 化石s emerged as an integral part of the changes in 自然哲学 that occurred during the 理性时代. At the end of the 18th century 乔治·居维叶's work established 比较解剖学 as a scientific discipline and, by proving that some 化石 动物s resembled no living ones, demonstrated that 动物s could become extinct, leading to the emergence of 古生物学.[94] The expanding knowledge of the 化石 record also played an increasing role in the development of 地质学, particularly 地层学.[95]

.

The first half of the 19th century saw geological and paleontological activity become increasingly well organized with the growth of geologic societies and museums[96][97] and an increasing number of professional geologists and 化石 specialists. Interest increased for reasons that were not purely scientific, as 地质学 and 古生物学 helped industrialists to find and exploit natural resources such as .[98]

.

This contributed to a rapid increase in knowledge about the history of 生命 on 地球 and to progress in the definition of the geologic time scale, largely based on 化石 证据. In 1822 Henri Marie Ducrotay de Blanville, editor of Journal de Phisique, coined the word "palaeontology" to refer to the study of ancient living 生命体s through 化石s.[99] As knowledge of 生命's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of 生命. This encouraged early 演化的 theories on the trans突变 of 物种s.[100] After 查尔斯·达尔文 published 物种起源 in 1859, much of the focus of 古生物学 shifted to understanding 演变ary paths, including human 演变, and 演化的 theory.[100]

Haikouichthys, from about 518百萬年前 in China, may be the earliest known 鱼类.[101]

.

The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in 北美洲.[102] The trend continued in the 20th century with additional regions of the 地球 being opened to systematic 化石 collection. 化石s found in China near the end of the 20th century have been particularly important as they have provided new information about the earliest 演变 of 动物s, early 鱼类, 恐龙s and the 演变 of 鸟类s.[103]

.

The last few decades of the 20th century saw a renewed interest in mass 灭绝s and their role in the 演变 of 生命 on 地球.[104] There was also a renewed interest in the 寒武纪大爆发 that apparently saw the development of the body plans of most 动物 phyla. The discovery of 化石s of the Ediacaran biota and developments in paleo生物学 extended knowledge about the history of 生命 back far before the 寒武纪.[59]

.

Increasing awareness of Gregor Mendel's pioneering work in genetics led first to the development of population genetics and then in the mid-20th century to the modern 演化的 synthesis, which explains 演变 as the outcome of events such as 突变s and horizontal gene transfer, which provide genetic variation, with genetic drift and 自然选择 driving changes in this variation over time.[105] Within the next few years the role and operation of DNA in genetic inheritance were discovered, leading to what is now known as the "Central Dogma" of molecular 生物学.[106] In the 1960s 分子系统发生学, the investigation of 演化的 "family trees" by techniques derived from 生物化学, began to make an impact, particularly when it was proposed that the human lineage had diverged from s much more recently than was generally thought at the time.[107] Although this early study compared 蛋白质s from 猿s and humans, most 分子系统发生学 research is now based on comparisons of RNA and DNA.[108]

See also

Notes

Template:生物学-footer Template:Good article 僅在優良條目中使用!

Template:Link GA

  1. ^ 1.0 1.1 Cowen, R. History of 生命 3rd. Blackwell Science. 2000: xi. ISBN 0-632-04444-6. 
  2. ^ Laporte, L.F. What, after All, Is 古生物学?. PALAIOS. 1988, 3 (5): 453. JSTOR 3514718. doi:10.2307/3514718.  已忽略未知参数|month=(建议使用|date=) (帮助)
  3. ^ 3.0 3.1 Laudan, R. What's so Special about the Past?. Nitecki, M.H., and Nitecki, D.V. (编). History and 演变. SUNY Press. 1992: 58 [7 February 2010]. ISBN 0-7914-1211-3. 
  4. ^ 4.0 4.1 4.2 Cleland, C.E. Methodological and Epistemic Differences between 历史学的 Science and 实验al Science (PDF). Philosophy of Science. 2002, 69 (3): 474–496 [September 17, 2008]. doi:10.1086/342453.  已忽略未知参数|month=(建议使用|date=) (帮助)
  5. ^ McGraw-Hill Encyclopedia of Science & Technology. McGraw-Hill. 2002: 58. ISBN 0-07-913665-6. 
  6. ^ Laudan, R. What's so Special about the Past?. Nitecki, M.H., and Nitecki, D.V. (编). History and 演变. SUNY Press. 1992: 57. ISBN 0-7914-1211-3. 
  7. ^ How does 古生物学 differ from anthropology and 考古学?. University of California Museum of 古生物学. [September 17, 2008]. 
  8. ^ 8.0 8.1 8.2 Brasier, M., McLoughlin, N., Green, O., and Wacey, D. A fresh look at the 化石 证据 for early Archaean cellular 生命 (PDF). Philosophical Transactions of the Royal Society: 生物学. 2006, 361 (1470): 887–902 [August 30, 2008]. PMC 1578727可免费查阅. PMID 16754605. doi:10.1098/rstb.2006.1835.  已忽略未知参数|month=(建议使用|date=) (帮助)
  9. ^ 9.0 9.1 Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-二叠纪 biotic crisis. 地质学. 2001, 29 (4): 351–354. Bibcode:2001Geo....29..351T. doi:10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2. 
  10. ^ 10.0 10.1 Peterson, Kevin J., and Butterfield, N.J. Origin of the Eumetazoa: Testing ecological predictions of 分子钟s against the Proterozoic 化石 record. Proceedings of the National Academy of Sciences. 2005, 102 (27): 9547–52. Bibcode:2005PNAS..102.9547P. PMC 1172262可免费查阅. PMID 15983372. doi:10.1073/pnas.0503660102. 
  11. ^ Hutchinson, John R.; Garcia, M. 暴龙 was not a fast runner. Nature. 28 February 2002, 415 (6875): 1018–1021. PMID 11875567. doi:10.1038/4151018a.  Summary in press release No Olympian: Analysis hints T. rex ran slowly, if at all
  12. ^ Meers, M.B. Maximum bite force and prey size of 暴龙 rex and their relationships to the inference of feeding behavior. 历史学的 生物学: A Journal of Paleo生物学. 2003, 16 (1): 1–12. doi:10.1080/0891296021000050755.  已忽略未知参数|month=(建议使用|date=) (帮助)
  13. ^ Bruner, Emiliano. Geometric morphometrics and palaeoneurology: 脑 sh猿 演变 in the 属 Homo. Journal of Human 演变. 2004, 47 (5): 279–303 [27 September 2011]. PMID 15530349. doi:10.1016/j.jhevol.2004.03.009.  已忽略未知参数|month=(建议使用|date=) (帮助)
  14. ^ Cady, S.L. 太空生物学: A New Frontier for 21st Century 古生物学家s. PALAIOS. 1998, 13 (2): 95–97. JSTOR 3515482. PMID 11542813. doi:10.2307/3515482.  已忽略未知参数|month=(建议使用|date=) (帮助)
  15. ^ Plotnick, R.E. A Somewhat Fuzzy Snapshot of Employment in 古生物学 in the United States. Palaeontologia Electronica (Coquina Press). [September 17, 2008]. ISSN 1094-8074. 
  16. ^ 16.0 16.1 What is 古生物学?. University of California Museum of 古生物学. [September 17, 2008]. 
  17. ^ Kitchell, J.A. 演化的 Paleocology: Recent Contributions to 演化的 Theory. Paleo生物学. 1985, 11 (1): 91–104 [September 17, 2008]. 
  18. ^ Hoehler, T.M., Bebout, B.M., and Des Marais, D.J. The role of 微生物席s in the production of reduced gases on the early 地球. Nature. 19 July 2001, 412 (6844): 324–327 [July 14, 2008]. PMID 11460161. doi:10.1038/35085554. 
  19. ^ 19.0 19.1 Hedges, S.B., Blair, J.E, Venturi, M.L., and Shoe, J.L. A molecular timescale of 真核细胞 演变 and the rise of complex 多细胞的 生命. BMC 演化的 生物学. 2004, 4: 2 [July 14, 2008]. PMC 341452可免费查阅. PMID 15005799. doi:10.1186/1471-2148-4-2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  20. ^ 古气候学. Ohio State University. [September 17, 2008]. 
  21. ^ 21.0 21.1 Algeo, T.J., and Scheckler, S.E. Terrestrial-marine teleconnections in the 泥盆纪: links between the 演变 of land plants, weathering processes, and marine 缺氧事件s. Philosophical Transactions of the Royal Society: 生物学. 1998, 353 (1365): 113–130. PMC 1692181可免费查阅. doi:10.1098/rstb.1998.0195. 
  22. ^ 生物地层学: William Smith 请检查|url=值 (帮助). [September 17, 2008]. 
  23. ^ Biogeography: Wallace and Wegener (1 of 2) 请检查|url=值 (帮助). University of California Museum of 古生物学 and University of California at Berkeley. [September 17, 2008]. 
  24. ^ 24.0 24.1 What is 古生物学?. University of California Museum of 古生物学. [September 17, 2008]. 
  25. ^ Benton MJ, Wills MA, Hitchin R. Quality of the 化石 record through time. Nature. 2000, 403 (6769): 534–7. Bibcode:2000Natur.403..534B. PMID 10676959. doi:10.1038/35000558. 
    Non-technical summary
  26. ^ Butterfield, N.J. Exceptional 化石 Preservation and the 寒武纪大爆发. Integrative and Comparative 生物学. 2003, 43 (1): 166–177 [June 28, 2008]. PMID 21680421. doi:10.1093/icb/43.1.166. 
  27. ^ Cowen, R. History of 生命 3rd. Blackwell Science. 2000: 61. ISBN 0-632-04444-6. 
  28. ^ Butterfield, N.J. 生态学 and 演变 of 寒武纪 plankton (PDF). The 生态学 of the 寒武纪 辐射 (New York: Columbia University Press). 2001: 200–216 [September 27, 2007]. 
  29. ^ Signor, P.W. Sampling bias, gradual 灭绝 patterns and catastrophes in the 化石 record. Geological implications of impacts of large asteroids and comets on the 地球 (Boulder, CO: Geological Society of America). 1982: 291–296 [January 1, 2008]. A 84–25651 10–42. 
  30. ^ 30.0 30.1 Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G.M., Vickers-Rich, P. The Rise of 动物s: 演变 and Diversification of the Kingdom 动物ia. JHU Press. 2007: 213–216 [November 14, 2008]. ISBN 0-8018-8679-1. 
  31. ^ e.g. Seilacher, A. How valid is Cruziana 地层学? (PDF). International Journal of 地球 Sciences. 1994, 83 (4): 752–758 [September 9, 2007]. Bibcode:1994GeoRu..83..752S. doi:10.1007/BF00251073. 
  32. ^ Brocks, J.J., Logan, G.A., Buick, R., and Summons, R.E. Archaean molecular 化石s and the rise of 真核细胞s. Science. 1999, 285 (5430): 1033–1036 [September 2, 2008]. PMID 10446042. doi:10.1126/science.285.5430.1033. 
  33. ^ 33.0 33.1 Cowen, R. History of 生命 3rd. Blackwell Science. 2000: 47–50. ISBN 0-632-04444-6. 
  34. ^ 34.0 34.1 Brochu, C.A, and Sumrall, C.D. Phylogenetic Nomenclature and 古生物学. Journal of 古生物学. 2001, 75 (4): 754–757. ISSN 0022-3360. JSTOR 1306999. doi:10.1666/0022-3360(2001)075<0754:PNAP>2.0.CO;2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  35. ^ Ereshefsky, M. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy. Cambridge University Press. 2001: 5. ISBN 0-521-78170-1. 
  36. ^ Cohen, B. L. and Holmer, L. E. and Luter, C. The 腕足动物 fold: a neglected body plan hypothesis (PDF). Palaeontology. 2003, 46 (1): 59–65 [August 7, 2008]. doi:10.1111/1475-4983.00287. 
  37. ^ 37.0 37.1 Martin, M.W.; Grazhdankin, D.V.; Bowring, S.A.; Evans, D.A.D.; Fedonkin, M.A.; Kirschvink, J.L. Age of Neoproterozoic 两侧对称动物n Body and 遗迹化石s, White Sea, Russia: Implications for Metazoan 演变. Science (abstract). May 5, 2000, 288 (5467): 841–5. Bibcode:2000Sci...288..841M. PMID 10797002. doi:10.1126/science.288.5467.841. 
  38. ^ Pufahl, P.K., Grimm, K.A., Abed, A.M., and Sadaqah, R.M.Y. Upper 白垩纪 (Campanian) phosphorites in Jordan: implications for the formation of a south Tethyan phosphorite giant. 沉积(沉淀物)ary 地质学. 2003, 161 (3–4): 175–205. Bibcode:2003SedG..161..175P. doi:10.1016/S0037-0738(03)00070-8.  已忽略未知参数|month=(建议使用|date=) (帮助)
  39. ^ Geologic Time: Radiometric Time Scale. U.S. Geological Survey. [September 20, 2008]. 
  40. ^ Löfgren, A. The conodont fauna in the Middle Ordovician Eoplacognathus pseudoplanus Zone of Baltoscandia. Geological Magazine. 2004, 141 (4): 505–524 [November 17, 2008]. doi:10.1017/S0016756804009227. 
  41. ^ Gehling, James; Jensen, Sören; Droser, Mary; Myrow, Paul; Narbonne, Guy. Burrowing below the basal 寒武纪 GSSP, Fortune Head, Newfoundland. Geological Magazine. 2001, 138 (2): 213–218 [November 17, 2008]. doi:10.1017/S001675680100509X.  已忽略未知参数|month=(建议使用|date=) (帮助)
  42. ^ e.g. Gehling, James; Jensen, Sören; Droser, Mary; Myrow, Paul; Narbonne, Guy. Burrowing below the basal 寒武纪 GSSP, Fortune Head, Newfoundland. Geological Magazine. 2001, 138 (2): 213–218 [November 17, 2008]. doi:10.1017/S001675680100509X.  已忽略未知参数|month=(建议使用|date=) (帮助)
  43. ^ Hug, L.A., and Roger, A.J. The Impact of 化石s and Taxon Sampling on Ancient Molecular Dating Analyses. Molecular 生物学 and 演变. 2007, 24 (8): 889–1897. PMID 17556757. doi:10.1093/molbev/msm115. 
  44. ^ * Early 地球 Likely Had 大陆s And Was Habitable. 2005-11-17. 
    * Cavosie, A. J.; J. W. Valley, S. A., Wilde, and E.I.M.F. Magmatic δ18O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. 地球 and 行星ary Science Letters. July 15, 2005, 235 (3–4): 663–681. Bibcode:2005E&PSL.235..663C. doi:10.1016/j.epsl.2005.04.028. 
  45. ^ Dauphas, N., Robert, F., and Marty, B. The Late Asteroidal and Cometary Bombardment of 地球 as Recorded in Water Deuterium to Protium Ratio. Icarus. 2000, 148 (2): 508–512. Bibcode:2000Icar..148..508D. doi:10.1006/icar.2000.6489.  已忽略未知参数|month=(建议使用|date=) (帮助)
  46. ^ Schopf, J. 化石 证据 of Archaean 生命. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1470): 869–85. PMC 1578735可免费查阅. PMID 16754604. doi:10.1098/rstb.2006.1834. 
  47. ^ * Arrhenius, S. The Propagation of 生命 in Space. Die Umschau volume=7. 1903: 32. Bibcode:1980qel..book...32A.  Reprinted in Goldsmith, D., (编). The Quest for Extraterrestrial 生命. University Science Books. ISBN 0-19-855704-3. 
    * Hoyle, F., and Wickramasinghe, C. On the Nature of Interstellar Grains. Astro物理学 and Space Science. 1979, 66: 77–90. Bibcode:1979Ap&SS..66...77H. doi:10.1007/BF00648361. 
    * Crick, F. H.; Orgel, L. E. Directed 泛种论. Icarus. 1973, 19 (3): 341–348. Bibcode:1973Icar...19..341C. doi:10.1016/0019-1035(73)90110-3. 
  48. ^ Peretó, J. Controversies on the origin of 生命 (PDF). Int. Microbiol. 2005, 8 (1): 23–31 [October 7, 2007]. PMID 15906258. 
  49. ^ Manten, A.A. Some problematic shallow-marine structures. Marine Geol. 1966, 4 (3): 227–232 [June 18, 2007]. doi:10.1016/0025-3227(66)90023-5. 
  50. ^ Krumbein, W.E., Brehm, U., Gerdes, G., Gorbushina, A.A., Levit, G. and Palinska, K.A. Biofilm, Biodictyon, Biomat Microbialites, Oolites, 叠层石s, Geophysiology, Global Mechanism, Parahistology. Krumbein, W.E., Paterson, D.M., and Zavarzin, G.A. (编). 化石 and Recent Biofilms: A Natural History of 生命 on 地球 (PDF). Kluwer Academic. 2003: 1–28 [July 9, 2008]. ISBN 1-4020-1597-6. 
  51. ^ Hoehler, T.M., Bebout, B.M., and Des Marais, D.J. The role of 微生物席s in the production of reduced gases on the early 地球. Nature. July 19, 2001, 412 (6844): 324–327 [July 14, 2008]. PMID 11460161. doi:10.1038/35085554. 
  52. ^ Nisbet, E.G., and Fowler, C.M.R. Archaean metabolic 演变 of 微生物席s (PDF). Proceedings of the Royal Society: 生物学. December 7, 1999, 266 (1436): 2375. PMC 1690475可免费查阅. doi:10.1098/rspb.1999.0934. 
  53. ^ Gray MW, Burger G, Lang BF. Mitochondrial 演变. Science. 1999, 283 (5407): 1476–81. Bibcode:1999Sci...283.1476G. PMID 10066161. doi:10.1126/science.283.5407.1476.  已忽略未知参数|month=(建议使用|date=) (帮助)
  54. ^ El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Reberto; Mazurier, Arnaud; Hammarlund, Emma U.; Boulvais, Philippe; Dupuy, Jean-Jacques. Large colonial 生命体s with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature. 2010, 466 (7302): 100–104. Bibcode:2010Natur.466..100A. PMID 20596019. doi:10.1038/nature09166.  已忽略未知参数|month=(建议使用|date=) (帮助)
  55. ^ Butterfield, N.J. Bangiomorpha pubescens n. gen., n. sp.: implications for the 演变 of sex, 多细胞的ity, and the Mesoproterozoic/Neoproterozoic 辐射 of 真核细胞s. Paleo生物学. 2000, 26 (3): 386–404 [2008-09-02]. ISSN 0094-8373. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  56. ^ Butterfield, N.J. Probable Proterozoic fungi. Paleo生物学. 2005, 31 (1): 165–182 [2008-09-02]. ISSN 0094-8373. doi:10.1666/0094-8373(2005)031<0165:PPF>2.0.CO;2. 
  57. ^ Chen, J.-Y., Oliveri, P., Gao, F., Dornbos, S.Q., Li, C-W., Bottjer, D.J. and Davidson, E.H. Pre寒武纪 动物 生命: Probable Developmental and Adult 刺细胞动物n Forms from Southwest China (PDF). Developmental 生物学. 2002, 248 (1): 182–196 [September 3, 2008]. PMID 12142030. doi:10.1006/dbio.2002.0714.  已忽略未知参数|month=(建议使用|date=) (帮助)
  58. ^ Bengtson, S. Lipps, J.H., and Waggoner, B.M. , 编. Neoproterozoic — 寒武纪 Biological R演变s (PDF). Paleontological Society P猿rs. 2004, 10: 67–78 [July 18, 2008].  |contribution=被忽略 (帮助)
  59. ^ 59.0 59.1 Marshall, C.R. Explaining the 寒武纪 "Explosion" of 动物s. Annu. Rev. 地球 行星. Sci. 2006, 34: 355–384 [November 6, 2007]. Bibcode:2006AREPS..34..355M. doi:10.1146/annurev.地球.33.031504.103001. 
  60. ^ Conway Morris, S. Once we were worms. New Scientist. August 2, 2003, 179 (2406): 34 [September 5, 2008]. 
  61. ^ Sansom I.J., Smith, M.M., and Smith, M.P. The 奥陶纪 辐射 of 脊椎动物. Ahlberg, P.E. (编). Major Events in Early Vertebrate 演变. Taylor and Francis. 2001: 156–171. ISBN 0-415-23370-4. 
  62. ^ Selden, P.A. "Terrestrialization of 动物s". Briggs, D.E.G., and Crowther, P.R. (编). Palaeo生物学 II: A Synthesis. Blackwell. 2001: 71–74 [September 5, 2008]. ISBN 0-632-05149-3. 
  63. ^ 63.0 63.1 Kenrick, P., and Crane, P.R. The origin and early 演变 of plants on land (PDF). Nature. 1997, 389 (6646): 33 [2010-11-10]. Bibcode:1997Natur.389...33K. doi:10.1038/37918.  已忽略未知参数|month=(建议使用|date=) (帮助)
  64. ^ Laurin, M. How 脊椎动物 Left the Water. Berkeley, California, USA.: University of California Press. 2010. ISBN 978-0-520-26647-6. 
  65. ^ MacNaughton, R.B., Cole, J.M., Dalrymple, R.W., Braddy, S.J., Briggs, D.E.G., and Lukie, T.D. First steps on land: Arthropod trackways in 寒武纪-Ordovician eolian sandstone, southeastern Ontario, Canada 请检查|url=值 (帮助). 地质学. 2002, 30 (5): 391–394 [2008-09-05]. Bibcode:2002Geo....30..391M. ISSN 0091-7613. doi:10.1130/0091-7613(2002)030<0391:FSOLAT>2.0.CO;2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  66. ^ Gordon, M.S, Graham, J.B., and Wang, T. Revisiting the Vertebrate Invasion of the Land. Physiological and Biochemical Zoology. September/October 2004, 77 (5): 697–699. doi:10.1086/425182. 
  67. ^ Clack, J.A. Getting a Leg Up on Land. November 2005 [September 6, 2008].  已忽略未知参数|newsp猿r= (帮助)
  68. ^ Luo, Z., Chen, P., Li, G., & Chen, M. A new eutriconodont 哺乳动物 and 演化的 development in early 哺乳动物s. Nature. March 2007, 446 (7133): 288–293. Bibcode:2007Natur.446..288L. PMID 17361176. doi:10.1038/nature05627. 
  69. ^ 69.0 69.1 Padian, Kevin. Basal Avialae. Weishampel, David B.; Dodson, Peter; & Osmólska, Halszka (eds.) (编). The 恐龙ia Second. Berkeley: University of California Press. 2004: 210–231. ISBN 0-520-24209-2. 
  70. ^ Sidor, C.A., O'Keefe, F.R., Damiani, R., Steyer, J.S., Smith, R.M.H., Larsson, H.C.E., Sereno, P.C., Ide, O, and Maga, A. 二叠纪 tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature. 2005, 434 (7035): 886–889 [September 8, 2008]. Bibcode:2005Natur.434..886S. PMID 15829962. doi:10.1038/nature03393.  已忽略未知参数|month=(建议使用|date=) (帮助)
  71. ^ Benton M.J. When 生命 Nearly Died: The Greatest Mass 灭绝 of All Time. Thames & Hudson. 2005. ISBN 978-0-500-28573-2. 
  72. ^ Ward, P.D.; Botha, J.; Buick, R.; Kock, M.O.; Erwin, D.H.; Garrisson, G.H.; Kirschvink, J.L.; Smith, R. Abrupt and gradual 灭绝 among late 二叠纪 land 脊椎动物 in the Karoo Basin, South Africa. Science. 2005, 307 (5710): 709–714. PMID 15661973. doi:10.1126/science.1107068. 
  73. ^ Benton, M.J. 恐龙 Success in the Triassic: a Noncompetitive Ecological Model (PDF). Quarterly Review of 生物学. March 1983, 58 (1) [September 8, 2008]. 
  74. ^ Ruben, J.A., and Jones, T.D. Selective Factors Associated with the Origin of Fur and Feathers. American Zoologist. 2000, 40 (4): 585–596. doi:10.1093/icb/40.4.585. 
  75. ^ Alroy J. The 化石 record of 北美洲n 哺乳动物s: 证据 for a Paleocene 演化的 辐射. Systematic 生物学. 1999, 48 (1): 107–18. PMID 12078635. doi:10.1080/106351599260472.  已忽略未知参数|month=(建议使用|date=) (帮助)
  76. ^ Simmons, N.B., Seymour,K.L., Habersetzer, J.,and Gunnell, G.F. Primitive Early Eocene bat from Wyoming and the 演变 of flight and echolocation. Nature. 2008, 451 (7180): 818–821. Bibcode:2008Natur.451..818S. PMID 18270539. doi:10.1038/nature06549.  已忽略未知参数|month=(建议使用|date=) (帮助)
  77. ^ J. G. M. Thewissen, S. I. Madar, and S. T. Hussain. Ambulocetus natans, an Eocene cetacean (哺乳动物ia) from Pakistan. Courier Forschungsinstitut Senckenberg. 1996, 191: 1–86. 
  78. ^ Crane, P.R., Friis, E.M., and Pedersen, K.R. The Origin and Early Diversification of Angiosperms. Gee, H. (编). Shaking the Tree: Readings from Nature in the History of 生命. University of Chicago Press. 2000: 233–250 [September 9, 2008]. ISBN 0-226-28496-4. 
  79. ^ Crepet, W.L. Progress in understanding angiosperm history, success, and relationships: Darwin's abominably "perplexing phenomenon" (PDF). Proceedings of the National Academy of Sciences. 2000, 97 (24): 12939–12941 [September 9 , 2008]. Bibcode:2000PNAS...9712939C. PMC 34068可免费查阅. PMID 11087846. doi:10.1073/pnas.97.24.12939.  已忽略未知参数|month=(建议使用|date=) (帮助);
  80. ^ Wilson, E.O., and Hölldobler, B. Eusociality: Origin and consequences (PDF). Proceedigs of the National Acedemy of Sciences. 2005, 102 (38): 13367–13371 [September 7, 2008]. Bibcode:2005PNAS..10213367W. PMC 1224642可免费查阅. PMID 16157878. doi:10.1073/pnas.0505858102.  已忽略未知参数|month=(建议使用|date=) (帮助)
  81. ^ Brunet M., Guy, F., Pilbeam, D., Mackaye, H.T.; et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature. 2002, 418 (6894): 145–151 [September 9, 2008]. PMID 12110880. doi:10.1038/nature00879.  已忽略未知参数|month=(建议使用|date=) (帮助)
  82. ^ De Miguel, C., and M. Henneberg, M. Variation in hominid 脑 size: How much is due to method?. HOMO — Journal of Comparative Human 生物学. 2001, 52 (1): 3–58 [September 9, 2008]. doi:10.1078/0018-442X-00019. 
  83. ^ Leakey, Richard. The Origin of Humankind. Science Masters Series. New York, NY: Basic Books. 1994: 87–89. ISBN 0-465-05313-0. 
  84. ^ Benton, M.J. 6. Reptiles Of The Triassic. Vertebrate Palaeontology. Blackwell. 2004 [November 17, 2008]. ISBN 0-04-566002-6. 
  85. ^ Van Valkenburgh, B. Major patterns in the history of xarnivorous 哺乳动物s. Annual Review of 地球 and 行星ary Sciences. 1999, 27: 463–493. Bibcode:1999AREPS..27..463V. doi:10.1146/annurev.地球.27.1.463. 
  86. ^ 86.0 86.1 MacLeod, Norman. 灭绝!. 2001-01-06 [September 11, 2008]. 
  87. ^ Martin, R.E. Cyclic and secular variation in micro化石 bio矿化作用: clues to the bio地球化学的 演变 of Phanerozoic oceans. Global and 行星ary Change. 1995, 11 (1): 1. Bibcode:1995GPC....11....1M. doi:10.1016/0921-8181(94)00011-2. 
  88. ^ Martin, R.E. Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere. PALAIOS. 1996, 11 (3): 209–219. JSTOR 3515230. doi:10.2307/3515230. 
  89. ^ Gould, S.J. Wonderful 生命: The Burgess Shale and the Nature of History. Hutchinson Radius. 1990: 194–206. ISBN 0-09-174271-4. 
  90. ^ 90.0 90.1 Rohde, R.A., and Muller, R.A. Cycles in 化石 diversity (PDF). Nature. 2005, 434 (7030): 208–210 [September 22, 2008]. Bibcode:2005Natur.434..208R. PMID 15758998. doi:10.1038/nature03339.  已忽略未知参数|month=(建议使用|date=) (帮助)
  91. ^ Rudwick, Martin J.S. The Meaning of 化石s 2nd. The University of Chicago Press. 1985: 39. ISBN 0-226-73103-0. 
  92. ^ Rudwick, Martin J.S. The Meaning of 化石s 2nd. The University of Chicago Press. 1985: 24. ISBN 0-226-73103-0. 
  93. ^ Needham, Joseph. Science and Civilization in China: Volume 3, 数学s and the Sciences of the Heavens and the 地球. Caves Books Ltd. 1986: 614. ISBN 0-253-34547-2. 
  94. ^ McGowan, Christopher. The Dragon Seekers. Persus Publishing. 2001: 3–4. ISBN 0-7382-0282-7. 
  95. ^ Palmer, D. 地球 Time: Exploring the Deep Past from Victorian England to the Grand Canyon. Wiley. 2005. ISBN 780470022214 请检查|isbn=值 (帮助). 
  96. ^ Greene, Marjorie; David Depew. The Philosophy of 生物学: An Episodic History. Cambridge University Press. 2004: 128–130. ISBN 0-521-64371-6. 
  97. ^ Bowler, Peter J.; Iwan Rhys Morus. Making Modern Science. The University of Chicago Press. 2005: 168–169. ISBN 0-226-06861-7. 
  98. ^ Rudwick, Martin J.S. The Meaning of 化石s 2nd. The University of Chicago Press. 1985: 200–201. ISBN 0-226-73103-0. 
  99. ^ Rudwick, Martin J.S. Worlds Before Adam: The Reconstruction of Geohistory in the Age of Reform. The University of Chicago Press. 2008: 48. ISBN 0-226-73128-6. 
  100. ^ 100.0 100.1 Buckland W & Gould SJ. 地质学 and Mineralogy Considered With Reference to Natural Theology (History of 古生物学). Ayer Company Publishing. 1980. ISBN 978-0-405-12706-9. 
  101. ^ Shu, D-G., Conway Morris, S., Han, J.; et al. Head and backbone of the Early 寒武纪 vertebrate Haikouichthys. Nature. January 2003, 421 (6922): 526–529 [September 21, 2008]. Bibcode:2003Natur.421..526S. PMID 12556891. doi:10.1038/nature01264. 
  102. ^ Everhart, Michael J. Oceans of Kansas: A Natural History of the Western Interior Sea. Indiana University Press. 2005: 17. ISBN 0-253-34547-2. 
  103. ^ Gee, H. (编). Rise of the Dragon: Readings from Nature on the Chinese 化石 Record. Chicago, Ill. ;London: University of Chicago Press. 2001: 276 [September 21, 2008]. ISBN 0-226-28491-3. 
  104. ^ Bowler, Peter J. 演变:The History of an Idea. University of California Press. 2003: 351–352. ISBN 0-520-23693-9. 
  105. ^ Bowler, Peter J. 演变:The History of an Idea. University of California Press. 2003: 325–339. ISBN 0-520-23693-9. 
  106. ^ Crick, F.H.C. On degenerate templates and the adaptor hypothesis 请检查|url=值 (帮助) (PDF). 1955 [October 4, 2008]. 
  107. ^ Sarich V.M., and Wilson A.C. Immunological time scale for hominid 演变. Science. 1967, 158 (3805): 1200–1203 [September 21, 2008]. Bibcode:1967Sci...158.1200S. PMID 4964406. doi:10.1126/science.158.3805.1200.  已忽略未知参数|month=(建议使用|date=) (帮助)
  108. ^ Page, R.D.M, and Holmes, E.C. Molecular 演变: A Phylogenetic Approach. Oxford: Blackwell Science. 1998: 2. ISBN 0-86542-889-1.