红外线:修订间差异
外观
删除的内容 添加的内容
Yinweichen-bot(留言 | 贡献) 小 機械人根據格式手冊移除多餘日期內鏈 |
|||
第94行: | 第94行: | ||
# 中、遠紅外線熱像感應材料:以波長3,000nm~14,000nm的中紅外線及遠紅外線為主要感應範圍,利用特殊的感應器及冷卻技術,形成電子影像。 |
# 中、遠紅外線熱像感應材料:以波長3,000nm~14,000nm的中紅外線及遠紅外線為主要感應範圍,利用特殊的感應器及冷卻技術,形成電子影像。 |
||
== |
==相關條目== |
||
*[[黑体辐射]] |
|||
金台寶的近紅外線應用網 |
|||
*[[太阳能电池]] |
|||
::註:2007/05/31以後yahoo的個人網頁已刪除,相關內容轉載於「近紅外線對科學鑑識的技術應用」http://city.udn.com/v1/blog/article/index.jsp?uid=infraread&f_ART_CATE=91241 : |
|||
== 參考資料 == |
== 參考資料 == |
2014年5月12日 (一) 13:32的版本
此條目或其章節极大或完全地依赖于某个单一的来源。 (2010年11月17日) |
红外线(Infrared)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光。覆蓋室溫下物體所發出的熱輻射的波段。其穿透云雾能力比可见光强,又俗称红外光,它在通讯、探测、医疗、軍事等方面有广泛的用途。
光線與"紅外線"的關係
- 光線是一種輻射電磁波,其波長分佈自300nm(紫外線)到14,000nm(遠紅外線)。不過以人類的經驗而言,「光域」通常指的是肉眼可見的光波域,即是從400nm(紫)到700nm(紅)可以被人類眼睛感覺得到的範圍,一般稱為「可見光域」(Visible)。由於近代科技的發達,人類利用各種「介質」(特殊材質的感應器),把感覺範圍從「可見光」部份向兩端擴充,最低可達到0.08~0.1nm(X光, 0.8~1Å),最高可達10,000nm(遠紅外線,熱像範圍)。
不同領域的紅外線
物體通常會輻射出跨越不同波長的紅外線,但是偵測器的設計通常只能接收感到興趣的特定頻譜寬度以內的輻射。結果是,紅外線通常會被區分成不同波長的較小區段。
CIE分類系統
國際照明委員會(CIE)建議將紅外線區分為以下三個類別[1]:
- 紅外線-A (IR-A):700奈米-1,400奈米 (0.7微米-1.4微米)
- 紅外線-B (IR-B):1,400奈米-3,000奈米 (1.4微米-3微米)
- 紅外線-C (IR-C):3,000奈米-1毫米 (3微米-1,000微米)
一般使用者的分類是[2]:
- 近紅外線(NIR, IR-A DIN):波長在0.75-1.4微米,以水的吸收來定義,由於在二氧化矽玻璃中的低衰減率,通常使用在光纖通信中。在這個區域的波長對影像的增強非常敏銳。例如,包括夜視設備,像是夜視鏡。
- 短波長紅外線(SWIR, IR-B DIN):1.4-3微米,水的吸收在1,450奈米顯著的增加。1,530至1,560奈米是主導遠距離通信的主要光譜區域。
- 中波長紅外線(MWIR, IR-C DIN) 也稱為中紅外線:波長在3-8微米。被動式的紅外線追熱導向飛彈技術在設計上就是使用3-5微米波段的大氣窗口來工作,對飛機紅外線標識的歸航,通常是針對飛機引擎排放的羽流。
- 長波長紅外線(LWIR, IR-C DIN):8-15微米。這是"熱成像"的區域,在這個波段的感測器不需要其他的光或外部熱源,例如太陽、月球或紅外燈,就可以獲得完整的熱排放量的被動影像。前視性紅外線(FLIR)系統使用這個區域的頻譜。,有時也會被歸類為"遠紅外線"
- 遠紅外線(FIR):15-1,000微米 (參見遠紅外線雷射)。
NIR和SWIR有時被稱為"反射紅外線",而MWIR和LWIR有時被稱為"熱紅外線",這是基於黑體輻射曲線的特性,典型的'熱'物體,像是排氣管,同樣的物體通常在MW的波段會比在LW波段下來得更為明亮。
ISO 20473分類[3]
名稱 | 縮寫 | 波長 |
---|---|---|
近紅外線 | NIR | 0.78-3微米 |
中紅外線 | MIR | 3-50微米 |
遠紅外線 | FIR | 50 – 1,000微米 |
天文學分類方案
天文學家通常將以如下的波段區分紅外線的範圍[4]:
名稱 | 縮寫 | 波長 |
---|---|---|
近紅外線 | NIR | (0.7-1)至5微米 |
中紅外線 | MIR | 5至 (25-40)微米 |
遠紅外線 | FIR | (25-40)至 (200-350)微米 |
這種分類不是很精確,而且和發佈的單位有關。這三種區域分別用於觀測不同溫度的範圍,以及不同環境下的空間。
感測器回應分類方案
- 近紅外線 | (Near Infra-red, NIR)| 700~ 2,000nm | 0.7~2 MICRON
- 中紅外線 | (Middle Infra-red, MIR)| 3,000~ 5,000nm | 3~5 MICRON
- 遠紅外線 | (Far Infra-red, FIR)| 8,000~14,000nm | 8~14 MICRON
紅外線的發現
- 公元1666年牛頓發現光譜並測量出3,900埃~7,600埃(400nm~700nm)是可見光的波長。1800年4月24日英國倫敦皇家學會(ROYAL SOCIETY)的威廉·赫歇爾發表太陽光在可見光譜的紅光之外還有一種不可見的延伸光譜,具有熱效應。他所使用的方法很簡單,用一支溫度計測量經過稜鏡分光後的各色光線溫度,由紫到紅,發現溫度逐漸增加,可是當溫度計放到紅光以外的部份,溫度仍持續上昇,因而斷定有紅外線的存在。在紫外線的部份也做同樣的測試,但溫度並沒有增高的反應。紫外線是1801年由RITTER用氯化銀(Silver chloride)感光劑所發現的。
紅外線輻射源區分(Infrared radiation)
紅外線輻射源可區分為四部份:
- 白熾發光區(Actinic range):或稱「光化反應區」,由白熾物體產生的射線,自可見光域到紅外域。如燈泡(鎢絲燈,TUNGSTEN FILAMENT LAMP),太陽。
- 熱體輻射區(Hot-object range):由非白熾物體產生的熱射線,如電熨斗及其它的電熱器等,平均溫度約在400℃左右。
- 發熱傳導區(Calorific range)由滾沸的熱水或熱蒸汽管產生的熱射線。平均溫度低於200℃,此區域又稱為「非光化反應區」(Non-actinic)。
- 溫體輻射區(Warm range):由人體、動物或地熱等所產生的熱射線,平均溫度約為40℃左右。
- 站在照相與攝影技術的觀點來看感光特性:光波的能量與感光材料的敏感度是造成感光最主要的因素。波長愈長,能量愈弱,即紅外線的能量要比可見光低,比紫外線更低。但是高能量波所必須面對的另一個難題就是:能量愈高穿透力愈強,無法形成反射波使感光材料擷取影像,例如X光,就必須在被照物體的背後取像。因此,攝影術就必須往長波長的方向——「近紅外線」部份發展。以造影為目標的近紅外線攝影術,隨著化學與電子科技的進展,演化出下列三個方向:
- 近紅外線底片:以波長700nm~900nm的近紅外線為主要感應範圍,利用加入特殊染料的乳劑產生光化學反應,使此一波域的光變化轉為化學變化形成影像。
- 近紅外線電子感光材料:以波長700nm~2,000nm的近紅外線為主要感應範圍,它是利用以矽為主的化合物晶體產生光電反應,形成電子影像。
- 中、遠紅外線熱像感應材料:以波長3,000nm~14,000nm的中紅外線及遠紅外線為主要感應範圍,利用特殊的感應器及冷卻技術,形成電子影像。
相關條目
參考資料
- ^ Henderson, Roy. Wavelength considerations. Instituts für Umform- und Hochleistungs. [2007-10-18]. (原始内容存档于2007-10-28).
- ^ Byrnes, James. Unexploded Ordnance Detection and Mitigation. Springer. 2009: 21–22. ISBN 9781402092527.
- ^ ISO 20473:2007. ISO. 已忽略文本“author ” (帮助);
- ^ IPAC Staff. Near, Mid and Far-Infrared. NASA ipac. [2007-04-04].