跳转到内容

本福特定律:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Chuluojun留言 | 贡献
无编辑摘要
第1行: 第1行:
{{noteTA|T=zh-cn:本福特定律;zh-tw:班佛定律|G1=Math}}

'''本福特定律''',也称为'''本福德法则''',說明一堆從實際生活得出的數據中,以1為首位數字的數的出現[[機率]]約為總數的三成,接近[[期望值]]1/9的3倍。推廣來說,越大的數,以它為首幾位的數出現的機率就越低。它可用於檢查各種數據是否有造假。
'''本福特定律''',也称为'''本福德法则''',說明一堆從實際生活得出的數據中,以1為首位數字的數的出現[[機率]]約為總數的三成,接近[[期望值]]1/9的3倍。推廣來說,越大的數,以它為首幾位的數出現的機率就越低。它可用於檢查各種數據是否有造假。



2015年1月25日 (日) 05:45的版本

本福特定律,也称为本福德法则,說明一堆從實際生活得出的數據中,以1為首位數字的數的出現機率約為總數的三成,接近期望值1/9的3倍。推廣來說,越大的數,以它為首幾位的數出現的機率就越低。它可用於檢查各種數據是否有造假。

數學

本福特定律說明在進位制中,以起頭的數出現的機率為。本福特定律不但適用於個位數字,連多位的數也可用。

十進制首位數字的出現機率(%,小數點後一個位):

d p
1 30.1%
2 17.6%
3 12.5%
4 9.7%
5 7.9%
6 6.7%
7 5.8%
8 5.1%
9 4.6%

不完整的解釋

一組平均增長的數據開始時,增長得較慢,由最初的數字增長到另一個數字起首的數的時間,必然比起首的數增長到,需要更多時間,所以出現率就更高了。

從數數目來說,順序從1開始數,1,2,3,...,9,從這點終結的話,所有數起首的機會似乎相同,但9之後的兩位數10至19,以1起首的數又大大拋離了其他數了。而下一堆9起首的數出現之前,必然會經過一堆以2,3,4,...,8起首的數。若果這樣數法有個終結點,以1起首的數的出現率一般都比9大。

這個定律的嚴格證明,可以參見Hill, T. P. "A Statistical Derivation of the Significant-Digit Law." Stat. Sci. 10, 354-363, 1996.。

應用

1972年,Hal Varian提出這個定律來用作檢查支持某些公共計劃的經濟數據有否欺瞞之處。1992年,Mark J. Nigrini便在其博士論文"The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies."(Ph.D. thesis. Cincinnati, OH: University of Cincinnati, 1992.)提出以它檢查是否有偽帳。

推而廣之,它能用於在會計、金融甚至選舉中出現的數據。例如,它被用于说明2009年伊朗总统大选中内贾德的造假[1]

若所用的數據有指定數值範圍;或不是以機率分布出現的數據,如常態分佈的數據;這個定律則不準確。

歷史

1881年,天文學家西蒙·紐康發現對數表包含以1起首的數那首幾頁較其他頁破爛。可是,亦可以以任何書起首數頁也會較破爛這個觀點解釋。這個故事可能是虛構的。

1938年,物理學家法蘭克·本福特重新發現這個現象,還通過了檢查許多數據來證實這點。

2009年,西班牙数学家在素数中发现了一种新模式,并且惊讶于为何现在才为人发现。虽然素数一般被认为是随机分布的,但西班牙数学家发现素数数列中每个素数的首位数字有明显的分布规律,它可以被描述了素数的本福德法则。这项新发现除了提供对素数属性的新洞见之外,还能应用于欺骗检测和股票市场分析等领域。

参见

參考