<math>D_n(x)=\frac{n*((-1)^n*n!*\zeta(n+1)+\sum_{m=0}^{n} ((-1)^(n-m+1)*n!*x^m*Li_{n-m+1}(exp(x)/m!))}{x^{n+1}}-\frac{n}{n+1}</math><ref>A. E. Dubinov, A. A. Dubinova ,Exact integral-free expressions for the integral Debye functions,Technical Physics Letters,December 2008, Volume 34, Issue 12, pp 999-1001</ref>
<math>D_n(x)=\frac{n*((-1)^n*n!*\zeta(n+1)+\sum_{m=0}^{n} ((-1)^{n-m+1}*n!*x^m*Li_{n-m+1}(e^{x}/m!))}{x^{n+1}}-\frac{n}{n+1}</math><ref>A. E. Dubinov, A. A. Dubinova ,Exact integral-free expressions for the integral Debye functions,Technical Physics Letters,December 2008, Volume 34, Issue 12, pp 999-1001</ref>
^A. E. Dubinov, A. A. Dubinova ,Exact integral-free expressions for the integral Debye functions,Technical Physics Letters,December 2008, Volume 34, Issue 12, pp 999-1001
^Gradshteyn, I. S., & Ryzhik, I. M. (1980). Table of integrals. Series, and Products (Academic, New York, 1980), (3.411).
^Milton abramowitz Irene Stegun, Handbook of Mathematical Functions,National Bureau of Standards, p998 1972