在[[物理学]]和[[数学]]中的[[向量分析]]中,'''亥姆霍兹定理''',<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref>或称'''向量分析基本定理''',<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[约西亚·吉布斯|J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[互联网档案馆|Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[奧利弗·黑維塞|Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />参见:{{le|流数法|Method of Fluxions}}。</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />参见:[[格林公式]]。</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref>指出对于任意足够[[光滑函数|光滑]]、快速衰减的三维[[向量场]]可分解为一个[[无旋向量场]]和一个[[螺线向量场]]的和,这个过程被称作'''亥姆霍兹分解'''。此定理以物理學家[[赫爾曼·馮·亥姆霍茲]]為名。<ref>参见:
在[[物理学]]和[[数学]]中的[[向量分析]]中,'''亥姆霍兹定理''',<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref>或称'''向量分析基本定理''',<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[约西亚·吉布斯|J. W. Gibbs]] & [[Edwin Bidwell Wilson]](1901)[https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[互联网档案馆|Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[奧利弗·黑維塞|Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />参见:{{le|流数法|Method of Fluxions}}。</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />参见:[[格林公式]]。</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref>指出对于任意足够[[光滑函数|光滑]]、快速衰减的三维[[向量场]]可分解为一个[[无旋向量场]]和一个[[螺线向量场]]的和,这个过程被称作'''亥姆霍兹分解'''。此定理以物理學家[[赫爾曼·馮·亥姆霍茲]]為名。<ref>参见:
* H. Helmholtz (1858) [http://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25#v=onepage&q&f=false "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25-55. On page 38, the components of the fluid's velocity (u, v, w) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (L, M, N).
* H. Helmholtz (1858) [http://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25#v=onepage&q&f=false "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"](On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25-55. On page 38, the components of the fluid's velocity(u, v, w)are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential(L, M, N)。
* However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849 ; published: 1856) [http://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1#v=onepage&q&f=false "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1-62; see pages 9-10.</ref>
* However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes(presented: 1849 ; published: 1856)[http://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1#v=onepage&q&f=false "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1-62; see pages 9-10.</ref>
^An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By William Woolsey Johnson. John Wiley & Sons, 1881. 参见:流数法。
^Vector Calculus: With Applications to Physics. By James Byrnie Shaw. D. Van Nostrand, 1922. p205. 参见:格林公式。
^A Treatise on the Integral Calculus, Volume 2. By Joseph Edwards. Chelsea Publishing Company, 1922.
H. Helmholtz (1858) "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"(On integrals of the hydrodynamic equations which correspond to vortex motions), Journal für die reine und angewandte Mathematik, 55: 25-55. On page 38, the components of the fluid's velocity(u, v, w)are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential(L, M, N)。
However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes(presented: 1849 ; published: 1856)"On the dynamical theory of diffraction,"Transactions of the Cambridge Philosophical Society, vol. 9, part I, pages 1-62; see pages 9-10.
^David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1999, p. 556.
参考文献
一般参考文献
George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101
弱形式的参考文献
C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." Mathematical Methods in the Applied Sciences, 21, 823–864, 1998.
R. Dautray and J.-L. Lions. Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.