跳转到内容

亥姆霍兹分解:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Awrysteme留言 | 贡献
无编辑摘要
第4行: 第4行:
}}
}}


在[[物理学]]和[[数学]]中的[[向量分析]]中,'''亥姆霍兹定理''',<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref> 或称'''向量分析基本定理''',<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[约西亚·吉布斯|J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[互联网档案馆|Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[奧利弗·黑維塞|Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />参见:{{le|流数法|Method of Fluxions}}。</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />参见:[[格林公式]]。</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref> 指出对于任意足够[[光滑函数|光滑]]、快速衰减的三维[[向量场]]可分解为一个[[无旋向量场]]和一个[[螺线向量场]]的和,这个过程被称作'''亥姆霍兹分解'''。此定理以物理學家[[赫爾曼·馮·亥姆霍茲]]為名。<ref>参见:
在[[物理学]]和[[数学]]中的[[向量分析]]中,'''亥姆霍兹定理''',<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref>或称'''向量分析基本定理''',<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[约西亚·吉布斯|J. W. Gibbs]] & [[Edwin Bidwell Wilson]](1901)[https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[互联网档案馆|Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[奧利弗·黑維塞|Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />参见:{{le|流数法|Method of Fluxions}}。</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />参见:[[格林公式]]。</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref>指出对于任意足够[[光滑函数|光滑]]、快速衰减的三维[[向量场]]可分解为一个[[无旋向量场]]和一个[[螺线向量场]]的和,这个过程被称作'''亥姆霍兹分解'''。此定理以物理學家[[赫爾曼·馮·亥姆霍茲]]為名。<ref>参见:
* H. Helmholtz (1858) [http://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25#v=onepage&q&f=false "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25-55. On page 38, the components of the fluid's velocity (u, v, w) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (L, M, N).
* H. Helmholtz (1858) [http://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25#v=onepage&q&f=false "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"](On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25-55. On page 38, the components of the fluid's velocity(u, v, w)are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential(L, M, N)。
* However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849 ; published: 1856) [http://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1#v=onepage&q&f=false "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1-62; see pages 9-10.</ref>
* However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes(presented: 1849 ; published: 1856)[http://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1#v=onepage&q&f=false "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1-62; see pages 9-10.</ref>


这意味着任何矢量场 {{math|'''F'''}},都可以视为两个势场([[純量勢]] {{mvar|φ}} 和[[向量勢]] {{math|'''A'''}})之和。
这意味着任何矢量场{{math|'''F'''}},都可以视为两个势场([[純量勢]]{{mvar|φ}}和[[向量勢]]{{math|'''A'''}})之和。


==定理內容==
==定理內容==
假定 {{math|'''F'''}} 為定義在有界區域 {{math|''V'' ⊆ '''R'''<sup>3</sup>}} 裡的二次連續可微向量場,且 {{mvar|S}} {{mvar|V}} 的包圍面,則 {{math|'''F'''}} 可被分解成無[[旋度]]及無[[散度]]兩部份:<ref>{{cite web|url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf|title=Helmholtz' Theorem|publisher=University of Vermont}}</ref>
假定{{math|'''F'''}}為定義在有界區域{{math|''V'' ⊆ '''R'''<sup>3</sup>}}裡的二次連續可微向量場,且{{mvar|S}}為{{mvar|V}}的包圍面,則{{math|'''F'''}}可被分解成無[[旋度]]及無[[散度]]兩部份:<ref>{{cite web|url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf|title=Helmholtz' Theorem|publisher=University of Vermont}}</ref>
:<math>\mathbf{F}=-\boldsymbol{\nabla}\Phi+\boldsymbol{\nabla}\times\mathbf{A}</math>,
:<math>\mathbf{F}=-\boldsymbol{\nabla}\Phi+\boldsymbol{\nabla}\times\mathbf{A}</math>,


第17行: 第17行:
:<math>\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
:<math>\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>



:<math>\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
:<math>\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>


如果{{math|''V'' {{=}} '''R'''<sup>3</sup>}},且{{math|'''F'''}}在無窮遠處消失的比<math>1/r</math>快,則純量勢及向量勢的第二項為零,也就是說

如果 {{math|''V'' {{=}} '''R'''<sup>3</sup>}},且 {{math|'''F'''}} 在無窮遠處消失的比 <math>1/r</math> 快,則純量勢及向量勢的第二項為零,也就是說
<ref name="griffiths">David J. Griffiths, ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref>
<ref name="griffiths">David J. Griffiths, ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref>


:<math>\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
:<math>\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>



:<math>\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
:<math>\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
第51行: 第48行:


:<math>\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\cdot\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\boldsymbol{\nabla}\times\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\times\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]</math>。
:<math>\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\cdot\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\boldsymbol{\nabla}\times\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\times\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]</math>。



利用以下二等式,
利用以下二等式,
第103行: 第99行:


純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。
純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。

現在考慮以下純量場及向量場:
現在考慮以下純量場及向量場:
:<math>\begin{array}{lll} G_\Phi(\vec{\omega}) = i\, \frac{\displaystyle \vec{\mathbf{G}}(\vec{\omega}) \cdot \vec{\omega}}{||\vec{\omega}||^2} & \quad\quad &
:<math>\begin{array}{lll} G_\Phi(\vec{\omega}) = i\, \frac{\displaystyle \vec{\mathbf{G}}(\vec{\omega}) \cdot \vec{\omega}}{||\vec{\omega}||^2} & \quad\quad &

2016年2月29日 (一) 12:58的版本

物理学数学中的向量分析中,亥姆霍兹定理[1][2]或称向量分析基本定理[3][4][5][6][7][8][9]指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。[10]

这意味着任何矢量场F,都可以视为两个势场(純量勢φ向量勢A)之和。

定理內容

假定F為定義在有界區域VR3裡的二次連續可微向量場,且SV的包圍面,則F可被分解成無旋度及無散度兩部份:[11]

其中

如果V = R3,且F在無窮遠處消失的比快,則純量勢及向量勢的第二項為零,也就是說 [12]

推導

假定我們有一個向量函數,且其旋度及散度已知。利用狄拉克δ函数可將函數改寫成

利用以下等式

可得

注意到,我們可將上式改寫成

利用以下二等式,

可得

利用散度定理,方程式可改寫成

定義

所以

利用傅利葉轉換做推導

F改寫成傅利葉轉換的形式:

純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。

現在考慮以下純量場及向量場:

所以

注释

  1. ^ On Helmholtz's Theorem in Finite Regions. By Jean Bladel. Midwestern Universities Research Association, 1958.
  2. ^ Hermann von Helmholtz. Clarendon Press, 1906. By Leo Koenigsberger. p357
  3. ^ An Elementary Course in the Integral Calculus. By Daniel Alexander Murray. American Book Company, 1898. p8.
  4. ^ J. W. Gibbs & Edwin Bidwell Wilson(1901)Vector Analysis, page 237, link from Internet Archive
  5. ^ Electromagnetic theory, Volume 1. By Oliver Heaviside. "The Electrician" printing and publishing company, limited, 1893.
  6. ^ Elements of the differential calculus. By Wesley Stoker Barker Woolhouse. Weale, 1854.
  7. ^ An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By William Woolsey Johnson. John Wiley & Sons, 1881.
    参见:流数法
  8. ^ Vector Calculus: With Applications to Physics. By James Byrnie Shaw. D. Van Nostrand, 1922. p205.
    参见:格林公式
  9. ^ A Treatise on the Integral Calculus, Volume 2. By Joseph Edwards. Chelsea Publishing Company, 1922.
  10. ^ 参见:
    • H. Helmholtz (1858) "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"(On integrals of the hydrodynamic equations which correspond to vortex motions), Journal für die reine und angewandte Mathematik, 55: 25-55. On page 38, the components of the fluid's velocity(u, v, w)are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential(L, M, N)。
    • However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes(presented: 1849 ; published: 1856)"On the dynamical theory of diffraction," Transactions of the Cambridge Philosophical Society, vol. 9, part I, pages 1-62; see pages 9-10.
  11. ^ Helmholtz' Theorem (PDF). University of Vermont. 
  12. ^ David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1999, p. 556.

参考文献

一般参考文献

  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101

弱形式的参考文献

  • C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." Mathematical Methods in the Applied Sciences, 21, 823–864, 1998.
  • R. Dautray and J.-L. Lions. Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
  • V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.

外部链接