GCD環:修订间差异
外观
删除的内容 添加的内容
Liangent-bot(留言 | 贡献) 撤销由140.112.115.226于2017年4月24日 (一) 09:10的版本44113931中的繁简改动 |
|||
第1行: | 第1行: | ||
'''GCD環'''是一種有特殊性質的[[整环]]''R'',滿足其中任二個非零的元素都有[[最大公因數]](GCD),或者等價的,都有[[最小公倍數]](LCM)<ref>{{cite book|author=Scott T. Chapman, Sarah Glaz (ed.)|title=Non-Noetherian Commutative Ring Theory|publisher=Springer|year=2000|series=Mathematics and Its Applications|isbn=0-7923-6492-9|page=479}}</ref>。 |
'''GCD環'''是一種有特殊性質的[[整环]]''R'',滿足其中任二個非零的元素都有[[最大公因數]](GCD),或者等價的,都有[[最小公倍數]](LCM)<ref>{{cite book|author=Scott T. Chapman, Sarah Glaz (ed.)|title=Non-Noetherian Commutative Ring Theory|publisher=Springer|year=2000|series=Mathematics and Its Applications|isbn=0-7923-6492-9|page=479}}</ref>。 |
||
GCD環是將[[唯一分解整環]]推廣到非{{le|諾特 (數學)|Noetherian ring|諾特環}}的情況 |
GCD環是將[[唯一分解整環]]推廣到非{{le|諾特 (數學)|Noetherian ring|諾特環}}的情況,事實上,一個整環是[[唯一分解整環]]若且惟若其為滿足{{le|主理想升链条件|ascending chain condition on principal ideals}}的GCD環。 |
||
== 性質 == |
== 性質 == |
2017年4月24日 (一) 09:12的版本
GCD環是一種有特殊性質的整环R,滿足其中任二個非零的元素都有最大公因數(GCD),或者等價的,都有最小公倍數(LCM)[1]。
GCD環是將唯一分解整環推廣到非諾特環的情況,事實上,一個整環是唯一分解整環若且惟若其為滿足主理想升链条件的GCD環。
性質
GCD環中每個不可約元素都是素元素(不過GCD環中不一定要有不可約元素,其至GCD環可能不是一個域)。GCD環是 整數封閉的,且其中每一個非零的元素都是素性元素[2]。換句話說,每個GCD環都是Schreier環。
針對GCD環R中的每一對元素x和y,其最大公因數d及最小公倍數m可以選擇為使dm = xy成立的數值,換句話說,若x和y為非零元素,而d是x的y的任何一個最大公因數,則xy/d為x和y的最小公倍數,反之亦然。
若R是GCD環,其多项式环R[X1,...,Xn]也是GCD環[3]。
針對一個GCD環中的多項式X,可以定義其內容為所有係數的最大公因數。因此多項式乘積的內容即為其多項式內容的乘積,如同高斯引理敘述的一樣。
舉例
- 唯一分解整環是GCD環,唯一分解整環是GCD環中恰好也是原子環(每一個非零非單位元素,至少有一種分解為不可約元素乘積的方式)的部份。
- Bézout環(每個有限生成的理想都是主要理想的整環)是GCD環。Bézout環不同於主要理想環(每個理想都是主要理想),Bézout環不一定要是唯一分解整環,例如一個整函数的環是非原子性的Bézout環,也有許多其他類似的例子。整環是Prüfer的GCD環的充份必要條件是其為Bézout環[4]
- 若R是非原子性的GCD環,則R[X]是GCD環中既不是唯一分解整環(因為非原子性),也不是Bézout環(因為X和R一個不能取倒數的非零元素a可以產生一個不包括1的理想,但1是X和a的最大公因數)的例子。任何符合此條件的環R[X1,...,Xn]都有類似性質。
參考資料
- ^ Scott T. Chapman, Sarah Glaz (ed.). Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications. Springer. 2000: 479. ISBN 0-7923-6492-9.
- ^ planetmath proof
- ^ Robert W. Gilmer, Commutative semigroup rings, University of Chicago Press, 1984, p. 172.
- ^ Ali, Majid M.; Smith, David J., Generalized GCD rings. II, Beiträge zur Algebra und Geometrie, 2003, 44 (1): 75–98, MR 1990985. P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".