跳转到内容

范数:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
GelfandMUC留言 | 贡献
Johnickcheng留言 | 贡献
例子:​ 内容扩充
第26行: 第26行:
* [[绝对值]]是[[实数]]集上的一个范数。
* [[绝对值]]是[[实数]]集上的一个范数。
* 对向量空间上的[[线性映射|线性型]]''f''可定义一个半范数:<math>\boldsymbol x \to |f(\boldsymbol x)|</math>。
* 对向量空间上的[[线性映射|线性型]]''f''可定义一个半范数:<math>\boldsymbol x \to |f(\boldsymbol x)|</math>。

===绝对值范数===
[[绝对值]]
:<math>\|\boldsymbol{x}\|=|x|</math>
是在由实数或虚数构成的一维向量空间中的范数。

绝对值范数是<math>L1</math>范数的特殊形式。


===欧几里德范数===
===欧几里德范数===

2017年9月7日 (四) 16:18的版本

擁有不同範數的單位圓

範數(norm),是具有“长度”概念的函數。在線性代數泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度大小。半範數反而可以為非零的向量賦予零長度。

舉一個簡單的例子,一個二維度的歐氏幾何空間就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。

擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。

定義

假設V是域F上的向量空間V半範數是一個函數,满足:

,

  1. (半正定性)
  2. (绝对一次齐次性)
  3. 三角不等式

範數是一個半範數加上額外性质:

4. ,当且仅当零向量正定性

如果拓撲向量空間的拓撲可以被範數導出,這個拓撲向量空間被稱為賦範向量空間

例子

  • 所有范数都是半范数。
  • 平凡半范数,即
  • 绝对值实数集上的一个范数。
  • 对向量空间上的线性型f可定义一个半范数:

绝对值范数

绝对值

是在由实数或虚数构成的一维向量空间中的范数。

绝对值范数是范数的特殊形式。

欧几里德范数

n欧几里德空间上,向量的最符合直觉的长度由以下公式给出

根据勾股定理,它给出了从原点到点之间的(通常意义下的)距离。欧几里德范数是上最常用的范数,但正如下面举出的,上也可以定义其他的范数。然而,以下定义的范数都定义了同一个拓扑结构,因此它们在某种意义上都是等价的。

在一个n维复数空间中,最常见的范数是:

以上两者又可以以向量与其自身的内积平方根表示:

其中x是一个列向量(),而表示其共轭转置

以上公式适用于任何内积空间,包括欧式空间和复空间。在欧几里得空间里,内积等价于点积,因此公式可以写成以下形式:

特别地,中所有的欧几里得范数为同一个给定正实数的向量的集合是一个n维球面

复数的欧几里得范数

如果将复平面看作欧几里得平面,那么复数的欧几里得范数是其绝对值(又称为)。这样,我们可把视为欧几里得平面上的一个向量,由此,这个向量的欧几里得范数即为(最初由欧拉提出)。

參見

參考文獻