2007年7月14日 (六) 13:14的版本
物理學中,正則量子化是多種對古典理論進行量子化的數學方法中的一種;在對古典場論進行量子化時,又稱二次量子化。「正則」這個詞其實源自古典理論,指的是一種理論中特定的結構(稱作辛結構(Symplectic structure)),這樣的結構在量子理論中也被保留。這在保羅·狄拉克嚐試建構量子場論時由他首先強調。
普通的量子力学方法只能处理粒子数守恒的系统。但在相对论量子力学中,粒子可以产生和湮灭,普通量子力学的数学表述方法不再适用。二次量子化通过引入产生算符和湮灭算符处理粒子的产生和湮灭,是建立相对论量子力学和量子场论的必要数学手段。相比普通量子力学表述方式,二次量子化方法能够自然而简洁的处理全同粒子的对称性和反对称性,所以即使在粒子数守恒的非相对论多体问题中,也被广泛应用。
多粒子态
在二次量子化的表述中,多粒子态简单的以标记每个量子态上有多少个粒子来表示:
即“量子态1上有n1个粒子,量子态2上有n2个粒子,量子态3上有n3个粒子,……”
湮灭算符
产生算符
对易关系
湮灭算符
产生算符
反对易关系
相關條目