跳转到内容

环 (代数):修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
第13行: 第13行:
#* 0 + a = a + 0 = a
#* 0 + a = a + 0 = a
#* ∀a ∃(−a) 满足 a + −a = −a + a = 0
#* ∀a ∃(−a) 满足 a + −a = −a + a = 0
# (R, ·)形成一个[[半群]]。即:
# (R, ·)形成一个[[半群]]。即:
#* (R, ·)是封闭的
#* (R, ·)是封闭的
#* (a·b)·c = a·(b·c)
#* (a·b)·c = a·(b·c)

2019年8月7日 (三) 08:18的版本

Ring)是由集合R和定义于其上的两种二元运算(记作+和·,常被简称为加法和乘法,但与一般所说的加法和乘法不同)所构成的,符合一些性质(具体见下)的代数结构。

环的定義类似于交换群,只不过在原来「+」的基础上又增添另一种运算「·」(注意我们这里所说的 + 與 · 一般不是我们所熟知的四则运算加法乘法)。在抽象代数中,研究的分支为环论

定义

集合R和定义于其上的二元运算 + 和·,(R, +, ·)构成一个,若它们满足:

  1. (R, +)形成一个交换群,其单位元称为零元素,记作‘0’。即:
    • (R, +)是封闭的
    • (a + b) = (b + a)
    • (a + b) + c = a + (b + c)
    • 0 + a = a + 0 = a
    • ∀a ∃(−a) 满足 a + −a = −a + a = 0
  2. (R, ·)形成一个半群。即:
    • (R, ·)是封闭的
    • (a·b)·c = a·(b·c)
  3. 乘法关于加法满足分配律。即:
    • a·(b + c) = (a·b) + (a·c)
    • (a + b)·c = (a·c) + (b·c)

其中,乘法运算符·常被省略,所以 a·b 可简写为 ab。 此外,乘法是比加法优先的运算,所以 a + bc 其实是 a + (b·c)。

基本性质

考虑一个环R,根据环的定义,易知R有以下性质:

  • ∀a∈R,a·0 = 0·a = 0;(这也是为什么0作为加法群的单位元,却被称为“零元素”)'

證明:a·0 = a·(0 + 0) (環的結合律) = a·0 + a·0 => a·0 - a·0 = a·0 + a·0 - a·0 (環有加法反元素) => 0 = a·0 ; 0·a 同理

  • ∀a,b∈R,(-a)·b = a·(-b) = -(a·b);

證明: (-a)·b = (-a)·b + (a·b) - (a·b) = (-a + a)·b - (a·b) (環的結合律) = 0·b - (a·b) = -(a·b) ; a·(-b) 同理,故(-a)·b = -(a·b) = a·(-b)

环的相关概念

特殊的环

幺环
若环R中,(R, ·)构成幺半群。即:∃1∈R,使得∀a∈R,有1·a=a·1=a。则R称为幺环。此时幺半群(R, ·)的幺元1,亦称为环R的幺元。
交换环
若环R中,(R, ·)还满足交换律,从而构成交换半群,即:∀a,b∈R,有ab=ba,则R称为交换环
无零因子环
若R中没有非0的零因子,则称R为为无零因子环
  • 此定义等价于以下任何一条:
    • R\{0}对乘法形成半群;
    • R\{0}对乘法封闭;
    • R中非0元素的乘积非0;
整环
无零因子的交换幺环称为整环

例:整数环,多项式环

唯一分解环
若整环R中每个非零非可逆元素都能唯一分解,称R是唯一分解环.
除环
若环R是幺环,且R\{0}对R上的乘法形成一个,即:∀a∈R\{0},∃a-1∈R\{0},使得a-1·a=a·a-1=1。则R称为除环
  • 除环不一定是交换环。反例:四元数环。
  • 非交换的除环是
  • 交换的除环是
主理想环
每个理想都是主理想的整环称为主理想环
单环
若幺环R中的极大理想是零理想,则称R为单环
商环
質环

例子

  • 集环:非空集的集合R构成一个环,当且仅当它满足以下几个条件中任何一个:
    • R对集合的并和差运算封闭,即:∀E,F∈R ⇒ E∪F∈R,E-F∈R;
    • R对集合的交和对称差运算封闭,即:∀E,F∈R ⇒ E∩F∈R,E△F∈R;
    • R对集合的交,差以及无交并运算封闭。
这样得到的集环以交为乘法,对称差为加法;以空集为零元,并且由于∀E∈R,E∩E=E·E=E,因此它还是布尔环

环的理想

考虑环(R, +, ·),依环的定义知(R, +)是阿贝尔群。集合I ⊆ R,考虑以下条件:

  1. (I, +) 构成 (R, +) 的子群。
  2. ∀i ∈ I,r ∈ R,有i·r ∈ I。
  3. ∀i ∈ I,r ∈ R,有r·i ∈ I。

若I满足条件1,2则称I是R的右理想; 若I满足条件1,3则称I是R的左理想; 若I满足条件1,2,3,即I既是R的右理想,也是R的左理想,则称I为R的双边理想,简称理想

示例

  • 整数环的理想:整数环Z只有形如{nZ}的理想。

基本性质

  • 在环中,(左,右,双边)理想的和与交仍然是(左,右,双边)理想。
  • 在除环中,(左,右)理想只有平凡(左,右)理想。
  • 对于环R的两个理想A,B,记。则由定义易知:
    1. 若A是R的左理想,则AB是R的左理想;
    2. 若B是R的右理想,则AB是R的右理想;
    3. 若A是R的左理想,B是R的右理想,则AB是R的双边理想。

相关概念

真(左,右,双边)理想
若R的(左,右,双边)理想I满足:I是R的真子集,I称为R的真(左,右,双边)理想
极大(左,右,双边)理想
环R及其真(左,右,双边)理想I,I被称为R的极大(左,右,双边)理想,若不存在R的真(左,右,双边)理想J,使得I是J的真子集
  • 若 I 是极大(左,右)理想,又是双边理想,则 I 是极大理想。
  • 极大双边理想不一定是极大(左,右)理想。
生成理想
环R,A ⊆ R,定义<A>=RA+AR+RAR+ZA,则易知:
  • <A>是环R的理想,并且<A>是R中所有包含子集A的理想的交,即<A>是R中包含子集A的最小理想。
称<A>为由子集A生成的理想,A称为<A>的生成元集。当A是有限集时,<A>称为R的有限生成理想
  • 下面是生成理想的几种特殊情况:
    1. 当R是交换环时,<A>=RA+ZA
    2. 当R是幺环时,<A>=RAR
    3. 当R是交换幺环时,<A>=RA
  • 同一个理想,其生成元集可能不唯一。
主理想
由环R中单个元素生成的理想称为R的主理想。即,设a ∈ R,则<{a}>称为R的主理想。
素理想
真理想I被称为R的素理想,若∀理想A,B ⊆ R,AB ⊆ I ⇒ A ⊆ I 或 B ⊆ I。
素环
若环R的零理想是素理想,则称R是素环(或质环)。无零因子环是素环。在交换环R中,真理想 I 是素理想的充分且必要条件是:是素环.
半素理想
环R的真理想I,若∀理想A,A2 ⊆ I ⇒ A ⊆ I。则称 I 是环R的半素理想
  • 半素理想是一类比素理想相对较弱条件的理想,因为素理想是半素理想,但半素理想未必是素理想。
  • 除环的零理想是极大理想。在有单位元的环中,如果零理想是其极大理想,称这种环是单环。除环是单环,域也是单环。反之则不对,即存在不是除环的单环。
  • 定理1 在整数环Z中,由p生成的主理想是极大理想的充分必要条件是:p是素数。
  • 定理2 设R是有单位元1的交换环。理想 I 是R的极大理想的充分且必要条件是:商环是域。
  • 定理3 设 I 是环R的左理想,则 I 是R的极大左理想的充分必要条件是对R的任意一个不含在 I 中的左理想J都有

有关环的其它概念

  • 零因子 (zero divisor):
设b是环中的非零元素,称a为左零因子,如果ab=0;同样可以定义右零因子。通称零因子;