跳转到内容

GCD環:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Cewbot留言 | 贡献
bot: 清理跨語言連結高斯引理成為內部連結:編輯摘要的red link經繁簡轉換後存在
Ericliu1912留言 | 贡献
第1行: 第1行:
{{環論|交換}}
'''GCD環'''是一種有特殊性質的[[整环]]''R'',滿足其中任二個非零的元素都有[[最大公因數]](GCD),或者等價的,都有[[最小公倍數]](LCM)<ref>{{cite book|author=Scott T. Chapman, Sarah Glaz (ed.)|title=Non-Noetherian Commutative Ring Theory|publisher=Springer|year=2000|series=Mathematics and Its Applications|isbn=0-7923-6492-9|page=479}}</ref>。
'''GCD環'''是一種有特殊性質的[[整环]]''R'',滿足其中任二個非零的元素都有[[最大公因數]](GCD),或者等價的,都有[[最小公倍數]](LCM)<ref>{{cite book|author=Scott T. Chapman, Sarah Glaz (ed.)|title=Non-Noetherian Commutative Ring Theory|publisher=Springer|year=2000|series=Mathematics and Its Applications|isbn=0-7923-6492-9|page=479}}</ref>。



2020年3月9日 (一) 09:30的版本


GCD環是一種有特殊性質的整环R,滿足其中任二個非零的元素都有最大公因數(GCD),或者等價的,都有最小公倍數(LCM)[1]

GCD環是將唯一分解整環推廣到非諾特環的情況,事實上,一個整環是唯一分解整環若且惟若其為滿足主理想升链条件英语ascending chain condition on principal ideals的GCD環。

性質

GCD環中每個不可約元素都是質元素(不過GCD環中不一定要有不可約元素,其至GCD環可能不是一個)。GCD環是 整數封閉英语integrally closed的,且其中每一個非零的元素都是素性元素英语primal element[2]。換句話說,每個GCD環都是Schreier環英语Schreier domain

針對GCD環R中的每一對元素xy,其最大公因數d及最小公倍數m可以選擇為使dm = xy成立的數值,換句話說,若xy為非零元素,而dxy的任何一個最大公因數,則xy/dxy的最小公倍數,反之亦然。

R是GCD環,其多项式环R[X1,...,Xn]也是GCD環[3]

針對一個GCD環中的多項式X,可以定義其內容為所有係數的最大公因數。因此多項式乘積的內容即為其多項式內容的乘積,如同高斯引理敘述的一樣。

舉例

  • 唯一分解整環是GCD環,唯一分解整環是GCD環中恰好也是原子環(每一個非零非單位元素,至少有一種分解為不可約元素乘積的方式)的部份。
  • Bézout環英语Bézout domain(每個有限生成的理想都是主要理想的整環)是GCD環。Bézout環不同於主要理想環英语Principal ideal domain(每個理想都是主要理想),Bézout環不一定要是唯一分解整環,例如一個整函数的環是非原子性的Bézout環,也有許多其他類似的例子。整環是Prüfer英语Prüfer domain的GCD環的充份必要條件是其為Bézout環[4]
  • R是非原子性的GCD環,則R[X]是GCD環中既不是唯一分解整環(因為非原子性),也不是Bézout環(因為XR一個不能取倒數的非零元素a可以產生一個不包括1的理想,但1是Xa的最大公因數)的例子。任何符合此條件的環R[X1,...,Xn]都有類似性質。

參考資料

  1. ^ Scott T. Chapman, Sarah Glaz (ed.). Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications. Springer. 2000: 479. ISBN 0-7923-6492-9. 
  2. ^ planetmath proof 互联网档案馆存檔,存档日期2012-03-15.
  3. ^ Robert W. Gilmer, Commutative semigroup rings, University of Chicago Press, 1984, p. 172.
  4. ^ Ali, Majid M.; Smith, David J., Generalized GCD rings. II, Beiträge zur Algebra und Geometrie, 2003, 44 (1): 75–98, MR 1990985 . P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain.".