跳转到内容

施拉姆-勒夫纳演进:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Tigerzeng留言 | 贡献
InternetArchiveBot留言 | 贡献
补救7个来源,并将0个来源标记为失效。) #IABot (v2.0.7
第65行: 第65行:


== 模拟 ==
== 模拟 ==
https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution
https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution {{Wayback|url=https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution |date=20200914025701 }}


== 参考文献 ==
== 参考文献 ==
第72行: 第72行:
== 阅读 ==
== 阅读 ==


* https://terrytao.wordpress.com/tag/schramm-loewner-evolution/<nowiki/>([[陶哲轩]]介绍SLE)
* https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ {{Wayback|url=https://terrytao.wordpress.com/tag/schramm-loewner-evolution/ |date=20190202182332 }}<nowiki/>([[陶哲轩]]介绍SLE)
* http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf<nowiki/>(Conformally invariant process in plane, by Lawler)
* http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf {{Wayback|url=http://users.ictp.it/~pub_off/lectures/lns017/Lawler/Lawler.pdf |date=20180304215642 }}<nowiki/>(Conformally invariant process in plane, by Lawler)
* http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf<nowiki/>(SCALING LIMITS AND THE SCHRAMM-LOEWNER EVOLUTION GREGORY F. LAWLER)
* http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf<nowiki/>(SCALING LIMITS AND THE SCHRAMM-LOEWNER EVOLUTION GREGORY F. LAWLER)
{{ReflistH}}
{{ReflistH}}
第84行: 第84行:
*{{Citation|last=Lawler|first=Gregory F.|title=Conformally invariant processes in the plane|publisher=[[American Mathematical Society]]|place=Providence, R.I.|series=Mathematical Surveys and Monographs|isbn=978-0-8218-3677-4|mr=2129588|year=2005|volume=114|url=https://books.google.com/books?id=JHMzab3u6U8C}}
*{{Citation|last=Lawler|first=Gregory F.|title=Conformally invariant processes in the plane|publisher=[[American Mathematical Society]]|place=Providence, R.I.|series=Mathematical Surveys and Monographs|isbn=978-0-8218-3677-4|mr=2129588|year=2005|volume=114|url=https://books.google.com/books?id=JHMzab3u6U8C}}
*{{Cite arXiv}}
*{{Cite arXiv}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Stochastic Loewner Evolution|url=http://www.math.cornell.edu/%7Elawler/encyclopedia.ps}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Stochastic Loewner Evolution|url=http://www.math.cornell.edu/%7Elawler/encyclopedia.ps|accessdate=2020-02-11|archive-date=2016-03-04|archive-url=https://web.archive.org/web/20160304044007/http://www.math.cornell.edu/~lawler/encyclopedia.ps|dead-url=no}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Conformal invariance and 2D statistical physics|journal=Bull. Amer. Math. Soc.|volume=46|year=2009|pages=35–54|doi=10.1090/S0273-0979-08-01229-9}}
*{{Citation|last=Lawler|first=Gregory F.|author-link=Gregory Lawler|title=Conformal invariance and 2D statistical physics|journal=Bull. Amer. Math. Soc.|volume=46|year=2009|pages=35–54|doi=10.1090/S0273-0979-08-01229-9}}
*{{Citation|last=Lawler|url=http://www.mrlonline.org/mrl/2001-008-004/2001-008-004-001.html|doi=10.4310/mrl.2001.v8.n4.a1|pages=401–411|number=4|volume=8|journal=Mathematical Research Letters|year=2001|mr=1849257|title=The dimension of the planar Brownian frontier is 4/3|first=Gregory F.|authorlink3=Wendelin Werner|first3=Wendelin|last3=Werner|authorlink2=Oded Schramm|first2=Oded|last2=Schramm|author-link=Gregory Lawler|arxiv=math/0010165}}
*{{Citation|last=Lawler|url=http://www.mrlonline.org/mrl/2001-008-004/2001-008-004-001.html|doi=10.4310/mrl.2001.v8.n4.a1|pages=401–411|number=4|volume=8|journal=Mathematical Research Letters|year=2001|mr=1849257|title=The dimension of the planar Brownian frontier is 4/3|first=Gregory F.|authorlink3=Wendelin Werner|first3=Wendelin|last3=Werner|authorlink2=Oded Schramm|first2=Oded|last2=Schramm|author-link=Gregory Lawler|arxiv=math/0010165|accessdate=2020-02-11|archive-date=2019-09-08|archive-url=https://web.archive.org/web/20190908141240/http://www.mrlonline.org/mrl/2001-008-004/2001-008-004-001.html|dead-url=no}}
*{{Citation|first=C.|last=Loewner|author-link=Charles Loewner|title=Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I|journal=Math. Ann.|volume=89|number=1–2|year=1923|pages=103–121|jfm=49.0714.01|doi=10.1007/BF01448091|url=http://dml.cz/bitstream/handle/10338.dmlcz/125927/MathBohem_118-1993-3_7.pdf}}
*{{Citation|first=C.|last=Loewner|author-link=Charles Loewner|title=Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I|journal=Math. Ann.|volume=89|number=1–2|year=1923|pages=103–121|jfm=49.0714.01|doi=10.1007/BF01448091|url=http://dml.cz/bitstream/handle/10338.dmlcz/125927/MathBohem_118-1993-3_7.pdf|accessdate=2020-02-11|archive-date=2019-09-26|archive-url=https://web.archive.org/web/20190926155107/https://dml.cz/bitstream/handle/10338.dmlcz/125927/MathBohem_118-1993-3_7.pdf|dead-url=no}}
*{{Citation|last=Mandelbrot|first=Benoît|author-link=Benoît Mandelbrot|title=The Fractal Geometry of Nature|publisher=W. H. Freeman|isbn=978-0-7167-1186-5|year=1982|url=https://archive.org/details/fractalgeometryo00beno}}
*{{Citation|last=Mandelbrot|first=Benoît|author-link=Benoît Mandelbrot|title=The Fractal Geometry of Nature|publisher=W. H. Freeman|isbn=978-0-7167-1186-5|year=1982|url=https://archive.org/details/fractalgeometryo00beno}}
*{{Citation|title=Introduction to Schramm–Loewner evolutions|url=http://www.statslab.cam.ac.uk/~james/Lectures/sle.pdf|first=J. R.|last=Norris|author-link=James R. Norris|year=2010}}
*{{Citation|title=Introduction to Schramm–Loewner evolutions|url=http://www.statslab.cam.ac.uk/~james/Lectures/sle.pdf|first=J. R.|last=Norris|author-link=James R. Norris|year=2010|accessdate=2020-02-11|archive-date=2019-07-14|archive-url=https://web.archive.org/web/20190714025509/http://www.statslab.cam.ac.uk/~james/Lectures/sle.pdf|dead-url=no}}
*{{Citation|last=Pommerenke|first=Christian|author-link=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series=Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher=Vandenhoeck & Ruprecht|year=1975}} (Chapter 6 treats the classical theory of Loewner's equation)
*{{Citation|last=Pommerenke|first=Christian|author-link=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series=Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher=Vandenhoeck & Ruprecht|year=1975}} (Chapter 6 treats the classical theory of Loewner's equation)
*{{Citation|last=Schramm|first=Oded|author-link=Oded Schramm|title=Scaling limits of loop-erased random walks and uniform spanning trees|arxiv=math.PR/9904022|mr=1776084|year=2000|journal=Israel Journal of Mathematics|volume=118|pages=221–288|doi=10.1007/BF02803524}} Schramm's original paper, introducing SLE
*{{Citation|last=Schramm|first=Oded|author-link=Oded Schramm|title=Scaling limits of loop-erased random walks and uniform spanning trees|arxiv=math.PR/9904022|mr=1776084|year=2000|journal=Israel Journal of Mathematics|volume=118|pages=221–288|doi=10.1007/BF02803524}} Schramm's original paper, introducing SLE

2020年9月26日 (六) 22:25的版本

概率论中,Schramm–Loewner演变(SLE)是一个平面曲线的家族以及统计力学模特的缩放极限

应用

Loewner演变

  • D单连通开集。D是复杂域,但是不等于C。
  • γ 是D中的一条曲线。γD 的边界开始。
  • 因为是单连通的,它通过共形映射等于D(黎曼映射理论)。
  • 同构
  • 反函數
  • t = 0,f0(z) = zg0(z) = z。
  • ζ(t)是驱动函数(driving function),接受D边界上的值

根据Loewner (1923,p. 121),Loewner方程英语Loewner differential equation

的关系是

Schramm–Loewner演变

SL演变是一个Loewner方程,有下面的驱动函数

其中 B(t) 是D边界上的布朗运动

例如

属性

若SLE描述共形场论,central charge c等于

Beffara (2008) 表明了SLE的豪斯多夫维数是min(2, 1 + κ/8)。

Lawler, Schramm & Werner (2001) 用SLE6 证明Mandelbrot (1982)的猜想:平面布朗运动边界的分形维数是4/3。

Rohde和Schramm表明了曲线的分形维数

模拟

https://github.com/xsources/Matlab-simulation-of-Schramm-Loewner-Evolution页面存档备份,存于互联网档案馆

参考文献

  1. ^ Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 2004, 32 (1B): 939–995. arXiv:math/0112234可免费查阅. doi:10.1214/aop/1079021469. 
  2. ^ Kenyon, Richard. Long range properties of spanning trees. J. Math. Phys. 2000, 41 (3): 1338–1363. Bibcode:10.1.1.39.7560 请检查|bibcode=值 (帮助). doi:10.1063/1.533190. 
  3. ^ Schramm, Oded; Sheffield, Scott, Harmonic explorer and its convergence to SLE4., Annals of Probability, 2005, 33 (6): 2127–2148, JSTOR 3481779, arXiv:math/0310210可免费查阅, doi:10.1214/009117905000000477 
  4. ^ Smirnov, Stanislav. Critical percolation in the plane. Comptes Rendus de l'Académie des Sciences. 2001, 333 (3): 239–244. Bibcode:2001CRASM.333..239S. arXiv:0909.4499可免费查阅. doi:10.1016/S0764-4442(01)01991-7. 
  5. ^ Kesten, Harry. Scaling relations for 2D-percolation. Comm. Math. Phys. 1987, 109 (1): 109–156. Bibcode:1987CMaPh.109..109K. doi:10.1007/BF01205674. 
  6. ^ Smirnov, Stanislav; Werner, Wendelin. Critical exponents for two-dimensional percolation (PDF). Math. Res. Lett. 2001, 8 (6): 729–744. arXiv:math/0109120可免费查阅. doi:10.4310/mrl.2001.v8.n6.a4. [永久失效連結]
  7. ^ Schramm, Oded; Steif, Jeffrey E. Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. 2010, 171 (2): 619–672. arXiv:math/0504586可免费查阅. doi:10.4007/annals.2010.171.619. 
  8. ^ Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster and interface measures for critical planar percolation. J. Amer. Math. Soc. 2013, 26 (4): 939–1024. arXiv:1008.1378可免费查阅. doi:10.1090/S0894-0347-2013-00772-9. 
  9. ^ Smirnov, Stanislav. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. Comptes Rendus de l'Académie des Sciences, Série I. 2001, 333 (3): 239–244. Bibcode:2001CRASM.333..239S. ISSN 0764-4442. arXiv:0909.4499可免费查阅. doi:10.1016/S0764-4442(01)01991-7. 

阅读