跳转到内容

质量维度一费米子:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
补救5个来源,并将0个来源标记为失效。) #IABot (v2.0.8
机器人:多次引用同一个参考文献只需定义一次(3个新参考文献,以及调用了3次新参考文献。)
 
第101行: 第101行:
Annalen Phys. '''16''', 38 (2007)
Annalen Phys. '''16''', 38 (2007)
[[doi:10.1002/andp.200610216]]
[[doi:10.1002/andp.200610216]]
[gr-qc/0607088].</ref>。Abhishek Basak和同事们认为,快速滚动的宇宙膨胀吸引子点对于Elko来说是独一无二的,它独立于潜在的形式<ref>S.H. Pereira et al.
[gr-qc/0607088].</ref>。Abhishek Basak和同事们认为,快速滚动的宇宙膨胀吸引子点对于Elko来说是独一无二的,它独立于潜在的形式<ref name="#1">S.H. Pereira et al.
Λ(t) cosmology induced by a slowly varying Elko field, JCAP '''1701''', no. 01, 055 (2017)
Λ(t) cosmology induced by a slowly varying Elko field, JCAP '''1701''', no. 01, 055 (2017)
[[doi:10.1088/1475-7516/2017/01/055]]
[[doi:10.1088/1475-7516/2017/01/055]]
第138行: 第138行:
Fermion localization mechanism with derivative geometrical coupling on branes,
Fermion localization mechanism with derivative geometrical coupling on branes,
arXiv:1701.02429 [hep-th] https://arxiv.org/abs/1701.02429 {{Wayback|url=https://arxiv.org/abs/1701.02429 |date=20190403134009 }}.</ref>
arXiv:1701.02429 [hep-th] https://arxiv.org/abs/1701.02429 {{Wayback|url=https://arxiv.org/abs/1701.02429 |date=20190403134009 }}.</ref>
<ref name="#1"/>
<ref>S.H. Pereira et al.
Λ(t) cosmology induced by a slowly varying Elko field, JCAP '''1701''', no. 01, 055 (2017)
[[doi:10.1088/1475-7516/2017/01/055]]
[arXiv:1608.02777 [gr-qc]].</ref>
<ref>A. Basak and S. Shankaranarayanan,
<ref>A. Basak and S. Shankaranarayanan,
Super-inflation and generation of first order vector perturbations in ELKO,
Super-inflation and generation of first order vector perturbations in ELKO,
第190行: 第187行:
[[doi:10.1103/PhysRevD.78.104001]]
[[doi:10.1103/PhysRevD.78.104001]]
[arXiv:0809.0469 [gr-qc]].</ref>
[arXiv:0809.0469 [gr-qc]].</ref>
<ref>D. Gredat and S. Shankaranarayanan,
<ref name="#2">D. Gredat and S. Shankaranarayanan,
Modified scalar and tensor spectra in spinor driven inflation,
Modified scalar and tensor spectra in spinor driven inflation,
JCAP '''1001''', 008 (2010)
JCAP '''1001''', 008 (2010)
第213行: 第210行:
[[doi:10.1103/PhysRevD.77.123535]]
[[doi:10.1103/PhysRevD.77.123535]]
[arXiv:0804.0616 [astro-ph]].</ref>
[arXiv:0804.0616 [astro-ph]].</ref>
<ref name="#2"/>
<ref>D. Gredat and S. Shankaranarayanan,
Modified scalar and tensor spectra in spinor driven inflation,
JCAP '''1001''', 008 (2010)
[[doi:10.1088/1475-7516/2010/01/008]]
[arXiv:0807.3336 [astro-ph]].</ref>
<ref>C. G. Boehmer and J. Burnett,
<ref>C. G. Boehmer and J. Burnett,
Dark spinors with torsion in cosmology,
Dark spinors with torsion in cosmology,
第234行: 第227行:
Extended set of Majorana spinors, a new dispersion relation, and a preferred frame,
Extended set of Majorana spinors, a new dispersion relation, and a preferred frame,
hep-ph/0305336 https://arxiv.org/abs/hep-ph/0305336 {{Wayback|url=https://arxiv.org/abs/hep-ph/0305336 |date=20200812055606 }}.</ref>
hep-ph/0305336 https://arxiv.org/abs/hep-ph/0305336 {{Wayback|url=https://arxiv.org/abs/hep-ph/0305336 |date=20200812055606 }}.</ref>
<ref>V. V. Dvoeglazov,
<ref name="#3">V. V. Dvoeglazov,
Neutral particles in light of the Majorana-Ahluwalia ideas,
Neutral particles in light of the Majorana-Ahluwalia ideas,
Int. J. Theor. Phys. '''34''', 2467 (1995)
Int. J. Theor. Phys. '''34''', 2467 (1995)
[[doi:10.1007/BF00670779]]
[[doi:10.1007/BF00670779]]
[hep-th/9504158].</ref>
[hep-th/9504158].</ref>
<ref name="#3"/>中。
<ref>V. V. Dvoeglazov,
Neutral particles in light of the Majorana-Ahluwalia ideas,
Int. J. Theor. Phys. '''34''', 2467 (1995)
[[doi:10.1007/BF00670779]]
[hep-th/9504158].</ref>中。


阿鲁瓦利亚在2017年解释了如何规避温伯格不走定理。同样在2017年发现<ref>D. V. Ahluwalia,
阿鲁瓦利亚在2017年解释了如何规避温伯格不走定理。同样在2017年发现<ref>D. V. Ahluwalia,

2022年6月23日 (四) 11:22的最新版本

理论物理学宇宙学中,半自旋质量维度一费米子(mass dimension one fermions of spin one half)是暗物质的候选者。这些费米子与已知的物质粒子,如电子或中微子,有着根本的不同。尽管它们被有着半自旋,但它们并不是由著名的狄拉克体系描述的,而是由一种旋量克莱恩-戈登体系(spinorial Klein-Gordon formalism)描述的。

2004年,Dharam Vir Ahluwalia(IIT Guwahati)与Daniel Grumiller合作,提出了一个关于质量维度一半自旋费米子的意外理论发现 [1] [2]。在随后的十年中,许多小组探索了新构造有趣的数学和物理性质,而D. V. Ahluwalia 和他的学生进一步完善了体系 [3] [4] [5] [6] [7] [8] [9] [10] [11] [12][13] [14] [15] [16]

然而,体系有两个令人不安的特点,即非局域性和对洛伦兹对称的微妙破坏。这两个问题的起源现在被追溯到一个隐藏的自由定义,旋量和伴随的关联场[17]。因此,现在有了一个全新的自旋半费米子量子理论,它不存在上述所有问题。新费米子的相互作用不仅限于四维四次自相互作用,而且限于与希格斯粒子的四维耦合。新费米子与中微子的广义Yukawa耦合提供了迄今为止未被怀疑的轻子数违反来源。因此,新的费米子为标准模型的狄拉克费米子提出了一个第一原则,暗物质伙伴与质量维度的对比,后者为三个半费米子与前者为一个半费米子,而没有改变费米子到玻色子的统计数据。

质量维度一费米子自旋半场用Elko场作为其展开系数。Elko是最初德语 "Eigenspinoren des Ladungskonjugationsoperators"的缩写,表示自旋体,它们是电荷共轭算符的本征自旋体。由于新费米子的质量维数与标准模型物质场不匹配,他们被认为是暗物质的候选者。由于它们的类标量质量维数,它们与质量维数3/2狄拉克费米子有显著差异[18]

质量维度一费米子通过提供第一原理暗物质和暗能量场,对宇宙学有着意想不到的影响。2005年Ahluwalia-Grumiller 论文发表后,Christian Boehmer率先将Elko应用到宇宙学中,并认为Elko不仅是主要的暗物质候选者,也是宇宙膨胀的主要候选者[19]。Einstein–Cartan–Elko系统由Boehmer首次引入宇宙学中。其他人已经证明,Elko也可以诱导一个时变的宇宙学常数[20]。Abhishek Basak和同事们认为,快速滚动的宇宙膨胀吸引子点对于Elko来说是独一无二的,它独立于潜在的形式[21] [22]。Roldao da Roch研究了膜上的Elko局域化现象[23] [24],并将其作为一种探索时空奇异拓扑特征的工具[25]

以下参考文献作为Elko场和质量维度一费米子的参考 [26] [27] [28] [21] [29] [30] [31] [32] [33] [34] [35] [36] [37][38] [39] [40] [41] [42] [43] [39] [44] [45] [46] [47] [48] [48]中。

阿鲁瓦利亚在2017年解释了如何规避温伯格不走定理。同样在2017年发现[49][50],质量维度一费米子即使没有宇宙学常数,也能通过量子效应诱导一个“宇宙学常数”项。这些导致非消失的效应可能是早期宇宙阶段膨胀阶段的原因。此外,对于较晚的演化,对应于具有时变宇宙学项的模型,这种量子效应与先前的最新研究一致[51]


参考文献

[编辑]
  1. ^ D. V. Ahluwalia and D. Grumiller, Spin half fermions with mass dimension one: Theory, phenomenology, and dark matter, JCAP 0507 012 (2005) doi:10.1088/1475-7516/2005/07/012 [hep-th/0412080]
  2. ^ D. V. Ahluwalia and D. Grumiller, Dark matter: A Spin one half fermion field with mass dimension one?, Phys. Rev. D 72 ,067701 (2005) doi:10.1103/PhysRevD.72.067701 [hep-th/0410192].
  3. ^ D. V. Ahluwalia and A. C. Nayak, Elko and mass dimension one field of spin one half: causality and Fermi statistics, Int. J. Mod. Phys. D 23, no. 14, 1430026 (2015) doi:10.1142/S0218271814300262 [arXiv:1502.01940 [hep-th]].
  4. ^ D. V. Ahluwalia and S. P. Horvath, Very special relativity as relativity of dark matter: The Elko connection, JHEP 1011, 078 (2010) doi:10.1007/JHEP11(2010)078 [arXiv:1008.0436 [hep-ph]].
  5. ^ D. V. Ahluwalia, C. Y. Lee and D. Schritt, Self-interacting Elko dark matter with an axis of locality, Phys. Rev. D 83, 065017 (2011) doi:10.1103/PhysRevD.83.065017 [arXiv:0911.2947 [hep-ph]].
  6. ^ D. V. Ahluwalia, C. Y. Lee and D. Schritt, Elko as self-interacting fermionic dark matter with axis of locality, Phys. Lett. B 687, 248 (2010) doi:10.1016/j.physletb.2010.03.010 [arXiv:0804.1854 [hep-th]].
  7. ^ A. E. Bernardini and R. da Rocha, Dynamical dispersion relation for ELKO dark spinor fields, Phys. Lett. B 717, 238 (2012) doi:10.1016/j.physletb.2012.09.004 [arXiv:1203.1049 [hep-th]].
  8. ^ R. da Rocha and W. A. Rodrigues, Jr., Where are ELKO spinor fields in Lounesto spinor field classification?, Mod. Phys. Lett. A 21, (2006) 65 doi:10.1142/S0217732306018482 [math-ph/0506075].
  9. ^ R. da Rocha and J. M. Hoff da Silva, From Dirac spinor fields to ELKO, J. Math. Phys. 48, 123517 (2007) doi:10.1063/1.2825840 [arXiv:0711.1103 [math-ph]].
  10. ^ L. Fabbri, Conformal Gravity with the most general ELKO Matter, Phys. Rev. D 85, 047502 (2012) doi:10.1103/PhysRevD.85.047502 [arXiv:1101.2566 [gr-qc]].
  11. ^ L. Fabbri and S. Vignolo, The most general ELKO Matter in torsional f(R)-theories, Annalen Phys. 524, 77 (2012) doi:10.1002/andp.201100006 [arXiv:1012.4282 [gr-qc]].
  12. ^ L. Fabbri, The Most General Cosmological Dynamics for ELKO Matter Fields, Phys. Lett. B 704, 255 (2011) doi:10.1016/j.physletb.2011.09.024 [arXiv:1011.1637 [gr-qc]].
  13. ^ K. E. Wunderle and R. Dick, A Supersymmetric Lagrangian for Fermionic Fields with Mass Dimension One, Can. J. Phys. 90, 1185 (2012) doi:10.1139/p2012-075 [arXiv:1010.0963 [hep-th]].
  14. ^ L. Fabbri, Zero Energy of Plane-Waves for ELKOs, Gen. Rel. Grav. 43, 1607 (2011) doi:10.1007/s10714-011-1143-4 [arXiv:1008.0334 [gr-qc]].
  15. ^ L. Fabbri, Causality for ELKOs, Mod. Phys. Lett. A 25, 2483 (2010) doi:10.1142/S0217732310033712 [arXiv:0911.5304 [gr-qc]].
  16. ^ R. da Rocha and J. M. Hoff da Silva, ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration, Adv.\ Appl.\ Clifford Algebras 20, 847 (2010) doi:10.1007/s00006-010-0225-9 [arXiv:0811.2717 [math-ph]].
  17. ^ D. V. Ahluwalia, The theory of local mass dimension one fermions of spin one half, Adv. Appl. Clifford Algebras 27 (2017) no.3, 2247-2285 . doi:10.1007/s00006-017-0775-1
  18. ^ M. Dias, F. de Campos and J. M. Hoff da Silva, ``Exploring Elko typical signature, Phys. Lett. B 706, 352 (2012) doi:10.1016/j.physletb.2011.11.030 [arXiv:1012.4642 [hep-ph]].
  19. ^ C.G.Boehmer, The Einstein-Elko system: Can dark matter drive inflation?, Annalen Phys.\ 16, 325 (2007), doi:10.1002/andp.200610237 [gr-qc/0701087].
  20. ^ C. G. Boehmer, The Einstein-Cartan-Elko system, Annalen Phys. 16, 38 (2007) doi:10.1002/andp.200610216 [gr-qc/0607088].
  21. ^ 21.0 21.1 S.H. Pereira et al. Λ(t) cosmology induced by a slowly varying Elko field, JCAP 1701, no. 01, 055 (2017) doi:10.1088/1475-7516/2017/01/055 [arXiv:1608.02777 [gr-qc]].
  22. ^ A. Basak, J. R. Bhatt, S. Shankaranarayanan and K. V. Prasantha Varma, Attractor behaviour in ELKO cosmology, JCAP 1304, 025 (2013) doi:10.1088/1475-7516/2013/04/025 [arXiv:1212.3445 [astro-ph.CO]].
  23. ^ H. M. Sadjadi, On coincidence problem and attractor solutions in ELKO dark energy model, Gen. Rel. Grav.44, 2329 (2012) doi:10.1007/s10714-012-1392-x [arXiv:1109.1961 [gr-qc]].
  24. ^ S. H. Pereira, A. Pinho S.S. and J. M. Hoff da Silva, Some remarks on the attractor behaviour in ELKO cosmology, JCAP 1408, 020 (2014) doi:10.1088/1475-7516/2014/08/020 [arXiv:1402.6723 [gr-qc]].
  25. ^ R. da Rocha, J. M. Hoff da Silva and A. E. Bernardini, Elko spinor fields as a tool for probing exotic topological spacetime features, Int. J. Mod. Phys. Conf. Ser. 3, 133 (2011). doi:10.1142/S201019451100122X
  26. ^ I. C. Jardim, G. Alencar, R. R. Landim and R. N. Costa Filho, Solutions to the problem of ELKO spinor localization in brane models, Phys.\ Rev.\ D 91, no. 8, 085008 (2015) doi:10.1103/PhysRevD.91.085008 [arXiv:1411.6962 [hep-th]]
  27. ^ Y. X. Liu, X. N. Zhou, K. Yang and F. W. Chen, Localization of 5D Elko Spinors on Minkowski Branes, Phys. Rev. D 86, 064012 (2012) doi:10.1103/PhysRevD.86.064012 [arXiv:1107.2506 [hep-th]].
  28. ^ Y. Y. Li, Y. P. Zhang, W. D. Guo and Y. X. Liu, Fermion localization mechanism with derivative geometrical coupling on branes, arXiv:1701.02429 [hep-th] https://arxiv.org/abs/1701.02429页面存档备份,存于互联网档案馆).
  29. ^ A. Basak and S. Shankaranarayanan, Super-inflation and generation of first order vector perturbations in ELKO, JCAP 1505, no. 05, 034 (2015) doi:10.1088/1475-7516/2015/05/034 [arXiv:1410.5768 [hep-ph]].
  30. ^ J. Lee, T. H. Lee and P. Oh, Inflation driven by dark spinor and Higgs fields, Int. J. Mod. Phys. D 23, no. 14, 1444006 (2014). doi:10.1142/S0218271814440064
  31. ^ A. Pinho S. S., S. H. Pereira and J. F. Jesus, A new approach on the stability analysis in ELKO cosmology, Eur. Phys. J. C 75, no. 1, 36 (2015) doi:10.1140/epjc/s10052-015-3260-9 [arXiv:1407.3401 [gr-qc]].
  32. ^ B. Agarwal, P. Jain, S. Mitra, A. C. Nayak and R. K. Verma, ELKO fermions as dark matter candidates, Phys. Rev. D 92, 075027 (2015) doi:10.1103/PhysRevD.92.075027 [arXiv:1407.0797 [hep-ph]].
  33. ^ J. M. Hoff da Silva and S. H. Pereira, Exact solutions to Elko spinors in spatially flat Friedmann-Robertson-Walker spacetimes, JCAP 1403, 009 (2014) doi:10.1088/1475-7516/2014/03/009 [arXiv:1401.3252 [hep-th]].
  34. ^ S. Kouwn, J. Lee, T. H. Lee and P. Oh, ``Dark spinor model with torsion and cosmology, Mod. Phys. Lett. A 28, 1350121 (2013) doi:10.1142/S0217732313501216 [arXiv:1211.2981 [gr-qc]].
  35. ^ J. Lee, T. H. Lee, P. Oh, T. H. Lee and P. Oh, Conformally-coupled dark spinor and FRW universe, Phys. Rev. D 86, 107301 (2012) doi:10.1103/PhysRevD.86.107301 [arXiv:1206.2263 [gr-qc]].
  36. ^ C. G. Boehmer, J. Burnett, D. F. Mota and D. J. Shaw, Dark spinor models in gravitation and cosmology, JHEP 1007, 053 (2010) doi:10.1007/JHEP07(2010)053 [arXiv:1003.3858 [hep-th]].
  37. ^ H. Wei, Spinor Dark Energy and Cosmological Coincidence Problem, Phys. Lett. B 695, 307 (2011) doi:10.1016/j.physletb.2010.10.053 [arXiv:1002.4230 [gr-qc]].
  38. ^ C. G.~Boehmer and J. Burnett, Dark spinors with torsion in cosmology, Phys. Rev. D 78, 104001 (2008) doi:10.1103/PhysRevD.78.104001 [arXiv:0809.0469 [gr-qc]].
  39. ^ 39.0 39.1 D. Gredat and S. Shankaranarayanan, Modified scalar and tensor spectra in spinor driven inflation, JCAP 1001, 008 (2010) doi:10.1088/1475-7516/2010/01/008 [arXiv:0807.3336 [astro-ph]].
  40. ^ S. H. Pereira and T. M. Guimarães, From inflation to recent cosmic acceleration: The Elko spinor field driving the evolution of the universe, arXiv:1702.07385 [gr-qc] https://arxiv.org/abs/1702.07385页面存档备份,存于互联网档案馆).
  41. ^ C. G. Boehmer and D. F. Mota, CMB Anisotropies and Inflation from Non-Standard Spinors, Phys. Lett. B 663, 168 (2008) doi:10.1016/j.physletb.2008.04.008 [arXiv:0710.2003 [astro-ph]].
  42. ^ M. Chaves and D. Singleton, A Unified Model of Phantom Energy and Dark Matter, SIGMA 4, 009 (2008) doi:10.3842/SIGMA.2008.009 [arXiv:0801.4728 [hep-th]].
  43. ^ C. G. Boehmer, Dark spinor inflation: Theory primer and dynamics, Phys. Rev. D 77, 123535 (2008) doi:10.1103/PhysRevD.77.123535 [arXiv:0804.0616 [astro-ph]].
  44. ^ C. G. Boehmer and J. Burnett, Dark spinors with torsion in cosmology, Phys. Rev. D 78, 104001 (2008) doi:10.1103/PhysRevD.78.104001 [arXiv:0809.0469 [gr-qc]].
  45. ^ D. V. Ahluwalia, Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation, Int. J. Mod. Phys. A 11, 1855 (1996) doi:10.1142/S0217751X96000973 [hep-th/9409134].
  46. ^ D. V. Ahluwalia, Evidence for Majorana neutrinos: Dawn of a new era in space-time structure, hep-ph/0212222 https://arxiv.org/abs/hep-ph/0212222页面存档备份,存于互联网档案馆).
  47. ^ D. V. Ahluwalia, Extended set of Majorana spinors, a new dispersion relation, and a preferred frame, hep-ph/0305336 https://arxiv.org/abs/hep-ph/0305336页面存档备份,存于互联网档案馆).
  48. ^ 48.0 48.1 V. V. Dvoeglazov, Neutral particles in light of the Majorana-Ahluwalia ideas, Int. J. Theor. Phys. 34, 2467 (1995) doi:10.1007/BF00670779 [hep-th/9504158].
  49. ^ D. V. Ahluwalia, Evading Weinberg's no-go theorem to construct mass dimension one fermions: Constructing darkness Europhysics Letters 118 (2017) no.6, 60001 DOI: 10.1209/0295-5075/118/60001.
  50. ^ R. J. Bueno Rogerio, J. M. Hoff da Silva, M. Dias, S. H. Pereira, Effective lagrangian for a mass dimension one fermionic field in curved spacetime, [arXiv:1709.08707 [hep-th]], https://arxiv.org/abs/1709.08707页面存档备份,存于互联网档案馆
  51. ^ S.H. Pereira et al. Λ(t) cosmology induced by a slowly varying Elko field, JCAP 1701, no. 01, 055 (2017) doi:10.1088/1475-7516/2017/01/055 [arXiv:1608.02777 [gr-qc]].