擬詹森多面體:修订间差异
第242行: | 第242行: | ||
|pages=165-209 |
|pages=165-209 |
||
|year=2009 |
|year=2009 |
||
|publisher=St. Petersburg Department of Steklov Institute of Mathematics, Russian~…}}</ref>獨立發現並列出這些立體。2010年,蒂莫芬科證明這些立體只有78種。<ref name="A. V. Timofeenko 2012">{{cite journal|journal=St. Petersburg Mathematical Journal|volume=23|issue=4|language=en|issn=1061-0022|date=2012-08-01|pages=779–780|doi=10.1090/S1061-0022-2012-01217-3|url=http://www.ams.org/jourcgi/jour-getitem?pii=S1061-0022-2012-01217-3|title=Corrections to “Junction of noncomposite polyhedra”|accessdate=2023-01-31|author=Timofeenko, Aleksei Victorovich}}</ref> |
|publisher=St. Petersburg Department of Steklov Institute of Mathematics, Russian~…}}</ref>獨立發現並列出這些立體。2010年,蒂莫芬科證明這些立體只有78種。<ref name= "article timofeenko2009junction"/><ref name="A. V. Timofeenko 2012">{{cite journal|journal=St. Petersburg Mathematical Journal|volume=23|issue=4|language=en|issn=1061-0022|date=2012-08-01|pages=779–780|doi=10.1090/S1061-0022-2012-01217-3|url=http://www.ams.org/jourcgi/jour-getitem?pii=S1061-0022-2012-01217-3|title=Corrections to “Junction of noncomposite polyhedra”|accessdate=2023-01-31|author=Timofeenko, Aleksei Victorovich}}</ref> |
||
{| class="wikitable sortable" |
{| class="wikitable sortable" |
||
!P<sub>n,k</sub><ref name=" |
!P<sub>n,k</sub><ref name= "article timofeenko2009junction"/> |
||
!S<sub>n</sub><ref name=" article gurin2009history"/> |
!S<sub>n</sub><ref name=" article gurin2009history"/> |
||
!名稱 |
!名稱 |
2023年2月1日 (三) 14:07的版本
在幾何學中,擬詹森多面體是嚴格凸多面體,其面幾乎都是正多邊形,但其中有部分或全部的面不是正多邊形但很接近正多邊形。這種多面體也包含詹森多面體,即所有的面都是正多邊形,而擬詹森多面體經常會在正多邊形與非正多邊形之間有物理構造上可以忽略的微小差異[1]。近似的精確值取決於這樣一個多面體的面逼近正多邊形的程度。
例子
名稱 康威多面體表示法 |
圖像 | 頂點布局 | 頂點 | 邊 | 面 | F3 | F4 | F5 | F6 | F8 | F10 | F12 | 對稱性 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
底面截角雙三角錐 t4dP3 |
2 (5.5.5) 12 (4.5.5) |
14 | 21 | 9 | 3 | 6 | Dih3 order 12 | ||||||
截角三角化四面體 t6kT |
4 (5.5.5) 24 (5.5.6) |
28 | 42 | 16 | 12 | 4 | Td, [3,3] order 24 | ||||||
五邊形六邊形五角十二面七十四面體 | 12 (3.5.3.6) 24 (3.3.5.6) 24 (3.3.3.3.5) |
60 | 132 | 74 | 56 | 12 | 6 | Th, [3+,4] order 24 | |||||
倒角立方體 cC |
24 (4.6.6) 8 (6.6.6) |
32 | 48 | 18 | 6 | 12 | Oh, [4,3] order 48 | ||||||
-- | 12 (5.5.6) 6 (3.5.3.5) 12 (3.3.5.5) |
30 | 54 | 26 | 12 | 12 | 2 | D6h, [6,2] order 24 | |||||
-- | 6 (5.5.5) 9 (3.5.3.5) 12 (3.3.5.5) |
27 | 51 | 26 | 14 | 12 | D3h, [3,2] order 12 | ||||||
四階十二面體 | 4 (5.5.5) 12 (3.5.3.5) 12 (3.3.5.5) |
28 | 54 | 28 | 16 | 12 | Td, [3,3] order 24 | ||||||
部分截半截角八面體 | 24 (3.4.3.9) 24 (3.9.9) |
38 | 84 | 48 | 24 | 6 | Oh, [4,3] | ||||||
倒角十二面體 cD |
60 (5.6.6) 20 (6.6.6) |
80 | 120 | 42 | 12 | 30 | Ih, [5,3] order 120 | ||||||
截半截角二十面體 atI |
60 (3.5.3.6) 30 (3.6.3.6) |
90 | 180 | 92 | 60 | 12 | 20 | Ih, [5,3] order 120 | |||||
截角截角二十面體 ttI |
120 (3.10.12) 60 (3.12.12) |
180 | 270 | 92 | 60 | 12 | 20 | Ih, [5,3] order 120 | |||||
擴展截角二十面體 etI |
60 (3.4.5.4) 120 (3.4.6.4) |
180 | 360 | 182 | 60 | 90 | 12 | 20 | Ih, [5,3] order 120 | ||||
扭稜截角二十面體 stI |
60 (3.3.3.3.5) 120 (3.3.3.3.6) |
180 | 450 | 272 | 240 | 12 | 20 | I, [5,3]+ order 60 |
共面擬詹森多面體
有些未能成為詹森多面體的候選多面體是因為其存在有兩個以上共面的面,其也可以算是全部由正多邊形組成的凸多面體,只是其凸為非嚴格凸。[2]這些多面體可被看做是凸的面且非常接近正多邊形。這些立體通常有無限多種,但若約定所有頂點要位於頂角處,不能位於面(共面的一組面視為同一個面)的內部,則滿足條件的立體只有78個,可以視為詹森多面體的自然推廣[2](參見章節條件邊正多邊形凸多面體)。
例如: 3.3...:
-
同相雙三角柱
(菱形柱) -
楔形體
-
二側錐八面體
(三方偏方面體) -
正三角錐反角柱
-
間三側錐八面體
-
間四側錐八面體
-
四側錐截角四面體
(截角四面體) -
八側錐截角八面體
(截角八面體) -
雙六角錐柱
(六角柱) -
正三角帳塔錐
(正三角帳塔)
4.4.4.4:
3.4.6.4:
-
正六角帳塔
(退化)
條件邊正多邊形凸多面體
若將詹森多面體的條件放寬成允許面兩兩共面,且所有頂點都要嚴格位於頂角上,不能有邊兩兩共線的情況(若允許邊兩兩共線,則結果會有無窮多種情況),也不能夠有頂點位於共面區域內部的情況,則能夠再列出有限個有此特性的立體。條件邊指的是對應棱的二面角為平角的邊。[2]在這條件下,能允許互相共面的面有正三角形與正三角形(3+3)、正三角形與正方形(3+4)、正三角形與正五邊形(3+5)、正方形和兩個位於對側的正三角形(3+4+3)、正五邊形和兩個不相鄰的正三角形(3+5+3),也就是說,這些立體除了有正多邊形面外,也會存在上述組合之形狀的面。[3]這類立體一共有78個。[2]和詹森多面體一樣,這些立體除了一些基本立體外,都能夠用柱體、錐體和28種立體互相組合而成。[3]亞歷克斯·多斯基(Alex Doskey)[4]、羅傑·考夫曼(Roger Kaufman)和史蒂夫·沃特曼(Steve Waterman)[5]在2006年列出了大部分有此性質的立體。2008年,維克多·扎加勒(Victor Zalgaller)[6]和阿列克謝·維克多羅維奇·蒂莫芬科(Aleksei Victorovich Timofeenko)[7]獨立發現並列出這些立體。2010年,蒂莫芬科證明這些立體只有78種。[7][8]
Pn,k[7] | Sn[6] | 名稱 | 組合 | 3D模型 | 頂點 | 邊 | 面 | F3 | F4 | F5 | F6 | F8 | F10 | F3+3 | Fetc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q1 | 斜六角柱 | (基本立體) | 12 | 18 | 8 | 2 | 2 | 4 | ||||||
Q2 | Q2 | 六斜方十二面體 (hexarhombic dodecahedron) | (基本立體) | 18 | 28 | 12 | 4 | 4 | 4 | ||||||
Q3 | Q3 | (未命名) | (基本立體) | 15 | 29 | 16 | 9 | 2 | 3 | 2 | |||||
Q4 | Q4 | (未命名) | (基本立體) | 15 | 27 | 14 | 5 | 2 | 3 | 4 | |||||
Q5 | Q5 | (未命名) | (基本立體) | 22 | 42 | 22 | 10 | 4 | 2 | 2 | 4 | ||||
Q6 | Q6 | (未命名) | (基本立體) | 18 | 33 | 17 | 7 | 3 | 3 | 1 | 3 | ||||
P2,2 | S3 | 同相雙三角柱 | 三角柱 | 8 | 12 | 6 | 4 | 2 | |||||||
P2,3 | S4 | 側三角柱立方體 | 三角柱+立方體 | 10 | 15 | 7 | 5 | 2 | |||||||
P2,4 | S5 | 側三角柱五角柱 | 三角柱+五角柱 | 12 | 18 | 8 | 6 | 2 | |||||||
P2,22 | S14 | 側錐四角錐 | 正四面體+四角錐 | 6 | 9 | 5 | 2 | 1 | 2 | ||||||
P2,25 | S17 | 側錐三角台塔 | 三角台塔+四角錐 | 10 | 16 | 8 | 2 | 2 | 1 | 3 | |||||
P2,29 | S22 | 側錐雙新月雙罩帳 | 雙新月雙罩帳+五角錐 | 15 | 29 | 16 | 9 | 2 | 3 | 2 | |||||
P2,30 | S46 | 側錐五角丸塔 | 五角丸塔+五角錐 | 21 | 36 | 17 | 7 | 5 | 1 | 4 | |||||
P2,31 | S24 | 五角丸塔錐 | 五角丸塔+五角錐 | 21 | 35 | 16 | 5 | 5 | 1 | 5 | |||||
P2,33 | S2 | 側錐三角廣底球狀罩帳 | 三角廣底球狀罩帳+五角錐 | 19 | 38 | 21 | 12 | 3 | 2 | 1 | 3 | ||||
P2,34 | S1 | 異側鄰二側錐雙新月雙罩帳 | 雙新月雙罩帳+五角錐 | 16 | 32 | 18 | 10 | 2 | 2 | 4 | |||||
P2,38 | S59 | 單旋側台塔截角四面體 | 截角四面體+三角台塔 | 15 | 24 | 11 | 2 | 3 | 3 | 3 | |||||
P2,42 | S60 | 單旋側台塔截角立方體 | 截角立方體+四角台塔 | 28 | 44 | 18 | 4 | 5 | 5 | 4 | |||||
P2,48 | S63 | 單旋側台塔截角十二面体 | 截角十二面体+五角台塔 | 65 | 100 | 37 | 15 | 5 | 1 | 11 | 5 | ||||
P3,1 | S6 | 側錐同相雙三角柱 | 三角柱+四角錐 | 9 | 16 | 9 | 4 | 3 | 2 | ||||||
P3,2 | S10 | 柱化異相雙三角柱 | 三角柱+立方體 | 12 | 18 | 8 | 4 | 4 | |||||||
P3,3 | S11 | 柱化同相雙三角柱 | 三角柱+立方體 | 12 | 18 | 8 | 6 | 2 | |||||||
P3,4 | S9 | 對側錐側三角柱立方體 | 三角柱+立方體+四角錐 | 11 | 19 | 10 | 4 | 4 | 2 | ||||||
P3,5 | S12 | 間二側三角柱五角柱 | 三角柱+五角柱 | 14 | 21 | 9 | 7 | 2 | |||||||
P3,6 | S13 | 間側錐側三角柱五角柱 | 三角柱+五角柱+四角錐 | 13 | 22 | 11 | 4 | 5 | 2 | ||||||
P3,22 | S40 | 五角丸塔錐柱 | 五角丸塔+十角柱+五角錐 | 31 | 55 | 26 | 5 | 10 | 5 | 1 | 5 | ||||
P3,31 | S41 | 五角丸塔錐反棱柱 | 五角丸塔+五角反棱柱+五角錐 | 31 | 65 | 36 | 25 | 5 | 1 | 5 | |||||
P3,33 | S15 | 側錐八面體 | 正八面體+正四面體 | 7 | 12 | 7 | 4 | 3 | |||||||
P3,34 | S18 | 側錐同相雙三角台塔 | 三角台塔+四角錐 | 13 | 25 | 14 | 6 | 5 | 3 | ||||||
P3,35 | S20 | 側錐截半立方體 | 截半立方體+四角錐 | 13 | 24 | 13 | 4 | 5 | 4 | ||||||
P3,36 | S23 | 對二側錐雙新月雙罩帳 | 雙新月雙罩帳+五角錐 | 16 | 32 | 18 | 10 | 2 | 2 | 4 | |||||
P3,37 | S47 | 間二側錐五角丸塔 | 五角丸塔+五角錐 | 22 | 37 | 17 | 4 | 4 | 1 | 8 | |||||
P3,38 | S48 | 罩帳側錐異相五角帳塔罩帳 | 五角丸塔+五角台塔+五角錐 | 26 | 51 | 27 | 12 | 5 | 6 | 4 | |||||
P3,39 | S49 | 罩帳側錐同相五角帳塔罩帳 | 五角丸塔+五角台塔+五角錐 | 26 | 51 | 27 | 12 | 5 | 6 | 4 | |||||
P3,40 | S27 | 側錐截半二十面体 | 截半二十面体+五角錐 | 31 | 60 | 31 | 15 | 11 | 5 | ||||||
P3,41 | S52 | 側錐同相雙五角丸塔 | 同相雙五角罩帳+五角錐 | 31 | 61 | 32 | 17 | 11 | 4 | ||||||
P3,42 | S25 | 異相五角帳塔罩帳錐 | 五角帳塔+五角罩帳+五角錐 | 26 | 50 | 26 | 10 | 5 | 6 | 5 | |||||
P3,43 | S26 | 同相五角帳塔罩帳錐 | 五角帳塔+五角罩帳+五角錐 | 26 | 50 | 26 | 10 | 5 | 6 | 5 | |||||
P3,44 | S28 | 同相雙五角罩帳錐 | 五角罩帳+五角錐 | 31 | 60 | 31 | 15 | 11 | 5 | ||||||
P3,48 | S61 | 單旋二側台塔截角立方體 | 截角立方體+四角台塔 | 32 | 56 | 26 | 8 | 10 | 4 | 4 | |||||
P3,49 | S62 | 雙旋二側台塔截角立方體 | 截角立方體+四角台塔 | 32 | 52 | 22 | 10 | 4 | 8 | ||||||
P3,51 | S66 | 單旋間二側台塔截角十二面体 | 截角十二面体+五角台塔 | 70 | 115 | 47 | 20 | 10 | 2 | 10 | 5 | ||||
P3,53 | S64 | 單旋對二側台塔截角十二面体 | 截角十二面体+五角台塔 | 70 | 115 | 47 | 20 | 10 | 2 | 10 | 5 | ||||
P3,54 | S67 | 雙旋間二側台塔截角十二面体 | 截角十二面体+五角台塔 | 70 | 110 | 42 | 10 | 10 | 2 | 10 | 10 | ||||
P3,55 | S65 | 雙旋對二側台塔截角十二面体 | 截角十二面体+五角台塔 | 70 | 110 | 42 | 10 | 10 | 2 | 10 | 10 | ||||
P4,1 | S7 | 鄰二側錐同相雙三角柱 | 三角柱+四角錐 | 10 | 20 | 12 | 8 | 2 | 2 | ||||||
P4,2 | S8 | 對二側錐同相雙三角柱 | 三角柱+四角錐 | 10 | 20 | 12 | 8 | 2 | 2 | ||||||
P4,5 | S31 | 同相五角台塔丸塔柱錐 | 五角台塔+五角丸塔+十角柱+五角錐 | 36 | 70 | 36 | 10 | 15 | 6 | 5 | |||||
P4,6 | S32 | 異相五角台塔丸塔柱錐 | 五角台塔+五角丸塔+十角柱+五角錐 | 36 | 70 | 36 | 10 | 15 | 6 | 5 | |||||
P4,7 | S33 | 同相雙五角丸塔柱錐 | 五角丸塔+十角柱+五角錐 | 41 | 80 | 41 | 15 | 10 | 11 | 5 | |||||
P4,8 | S34 | 異相雙五角丸塔柱錐 | 五角丸塔+十角柱+五角錐 | 41 | 80 | 41 | 15 | 10 | 11 | 5 | |||||
P4,9 | S37 | 五角台塔丸塔反棱柱錐 | 五角台塔+五角丸塔+十角反棱柱+五角錐 | 36 | 80 | 46 | 30 | 5 | 6 | 5 | |||||
P4,10 | S38 | 雙五角丸塔反棱柱錐 | 五角丸塔+十角反棱柱+五角錐 | 41 | 90 | 51 | 35 | 11 | 5 | ||||||
P4,11 | S16 | 二側錐八面體 | 正四面體+正八面體 | 8 | 12 | 6 | 6 | ||||||||
P4,12 | S19 | 間二側錐同相雙三角台塔 | 三角台塔+四角錐 | 14 | 26 | 14 | 4 | 4 | 6 | ||||||
P4,13 | S21 | 對二側錐截半立方體 | 截半立方體+四角錐 | 14 | 24 | 12 | 4 | 8 | |||||||
P4,14 | S50 | 間二側錐異相五角帳塔罩帳 | 五角帳塔+五角罩帳+五角錐 | 27 | 52 | 27 | 9 | 5 | 5 | 8 | |||||
P4,15 | S51 | 間二側錐同相五角帳塔罩帳 | 五角帳塔+五角罩帳+五角錐 | 27 | 52 | 27 | 9 | 5 | 5 | 8 | |||||
P4,16 | S44 | 間二側錐截半二十面体 | 截半二十面体+五角錐 | 32 | 60 | 30 | 10 | 10 | 10 | ||||||
P4,17 | S53 | 同側間二側錐同相雙五角罩帳 | 五角罩帳+五角錐 | 32 | 62 | 32 | 14 | 10 | 8 | ||||||
P4,18 | S29 | 對二側錐截半二十面体 | 截半二十面体+五角錐 | 32 | 60 | 30 | 10 | 10 | 10 | ||||||
P4,19 | S57 | 異側鄰二側錐同相雙五角罩帳 | 五角罩帳+五角錐 | 32 | 62 | 32 | 14 | 10 | 8 | ||||||
P4,20 | S58 | 異側對二側錐同相雙五角罩帳 | 五角罩帳+五角錐 | 32 | 62 | 32 | 14 | 10 | 8 | ||||||
P4,21 | S42 | 異側側錐同相雙五角罩帳錐 | 五角罩帳+五角錐 | 32 | 61 | 31 | 12 | 10 | 9 | ||||||
P4,22 | S30 | 同相雙五角罩帳雙錐 | 五角罩帳+五角錐 | 32 | 60 | 30 | 10 | 10 | 10 | ||||||
P4,25 | S68 | 單旋三側帳塔截角十二面體 | 截角十二面体+五角帳塔 | 75 | 130 | 57 | 25 | 15 | 3 | 9 | 5 | ||||
P4,26 | S69 | 雙旋三側帳塔截角十二面體 | 截角十二面体+五角帳塔 | 75 | 125 | 52 | 15 | 15 | 3 | 9 | 10 | ||||
P4,27 | S70 | 三旋三側帳塔截角十二面體 | 截角十二面体+五角帳塔 | 75 | 120 | 47 | 5 | 15 | 3 | 9 | 15 | ||||
P4,30 | 斜四角柱 | 正四面體+四角錐 | 8 | 12 | 6 | 2 | 4 | ||||||||
P4,31 | 雙重側錐四角錐 (doubled augmented square pyramid) 雙斜三角柱 (doubled oblique triangular prism) |
正四面體+四角錐 | 8 | 14 | 8 | 4 | 2 | 2 | |||||||
P5,1 | S35 | 同相雙五角罩帳柱雙錐 | 五角罩帳+十角柱+五角錐 | 42 | 80 | 40 | 10 | 10 | 10 | 10 | |||||
P5,2 | S36 | 異相雙五角罩帳柱雙錐 | 五角罩帳+十角柱+五角錐 | 42 | 80 | 40 | 10 | 10 | 10 | 10 | |||||
P5,3 | S39 | 雙五角罩帳反棱柱雙錐 | 五角罩帳+十角反棱柱+五角錐 | 42 | 90 | 50 | 30 | 10 | 10 | ||||||
P5,4 | S45 | 三側錐截半二十面体 | 截半二十面体+五角錐 | 33 | 60 | 29 | 5 | 9 | 15 | ||||||
P5,5 | S55 | 異側連三側錐同相雙五角罩帳 | 五角罩帳+五角錐 | 33 | 63 | 32 | 11 | 9 | 12 | ||||||
P5,6 | S56 | 異側偏三側錐同相雙五角罩帳 | 五角罩帳+五角錐 | 33 | 63 | 32 | 11 | 9 | 12 | ||||||
P5,7 | S43 | 異側間二側錐同相雙五角罩帳錐 | 五角罩帳+五角錐 | 33 | 62 | 31 | 9 | 9 | 13 | ||||||
P6,1 | S54 | 四側錐同相雙五角罩帳錐 | 五角罩帳+五角錐 | 34 | 64 | 32 | 8 | 8 | 16 |
參見
參考文獻
- ^ Kaplan, Craig S.; Hart, George W., Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons, Bridges: Mathematical Connections in Art, Music and Science (PDF), 2001 [2014-05-01], (原始内容存档 (PDF)于2015-09-23).
- ^ 2.0 2.1 2.2 2.3 Robert R Tupelo-Schneck. Convex regular-faced polyhedra with conditional edges.
- ^ 3.0 3.1 Robert R Tupelo-Schneck. Regular-faced Polyhedra.
- ^ Alex Doskey. Convex Diamond-Regular Polyhedra.
- ^ Steve Waterman. Convex hulls having regular diamonds.
- ^ 6.0 6.1 Gurin, AM and Zalgaller, VA. On the history of the study of convex polyhedra with regular faces and faces composed of regular ones. Translations of the American Mathematical Society-Series 2. 2009, 228: 169.
- ^ 7.0 7.1 7.2 Timofeenko, Aleksei Victorovich. Junction of noncomposite polygons. Algebra i Analiz (St. Petersburg Department of Steklov Institute of Mathematics, Russian~…). 2009, 21 (3): 165–209.
- ^ Timofeenko, Aleksei Victorovich. Corrections to “Junction of noncomposite polyhedra”. St. Petersburg Mathematical Journal. 2012-08-01, 23 (4): 779–780 [2023-01-31]. ISSN 1061-0022. doi:10.1090/S1061-0022-2012-01217-3 (英语).