跳转到内容

擬詹森多面體:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
第21行: 第21行:
! 名稱<br>[[康威多面體表示法]]!! 圖像!!{{link-en|頂點布局|Vertex configuration}}!! 頂點!! 邊!! 面!! F<sub>3</sub>!! F<sub>4</sub>!! F<sub>5</sub>!! F<sub>6</sub>!! F<sub>8</sub>!! F<sub>10</sub>!! F<sub>12</sub>!! {{link-en|球面對稱群列表|List of spherical symmetry groups|對稱性}}
! 名稱<br>[[康威多面體表示法]]!! 圖像!!{{link-en|頂點布局|Vertex configuration}}!! 頂點!! 邊!! 面!! F<sub>3</sub>!! F<sub>4</sub>!! F<sub>5</sub>!! F<sub>6</sub>!! F<sub>8</sub>!! F<sub>10</sub>!! F<sub>12</sub>!! {{link-en|球面對稱群列表|List of spherical symmetry groups|對稱性}}
|- align=center
|- align=center
| [[三側錐三角柱#對偶多面體|底面截角]][[雙三角錐]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C100A1t4dP3 t4dP3]||[[File:Associahedron.gif|80px]]|| 2 (5.5.5)<br>12 (4.5.5)|| 14|| 21|| 9|| || 3|| 6|||||||||| Dih<sub>3</sub><br>order 12
| [[三側錐三角柱#對偶多面體|底面截角]][[雙三角錐]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C100A1t4dP3 t4dP3]||[[File:Associahedron.gif|80px]]|| 2 (5.5.5)<br>12 (4.5.5)|| 14|| 21|| 9|| || 3|| 6|||||||||| Dih<sub>3</sub><br>12
|- align=center
|- align=center
| [[截角三角化四面體]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C100A1t6kT t6kT]
| [[截角三角化四面體]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C100A1t6kT t6kT]
第36行: 第36行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''T''<sub>d</sub>, [3,3]<br>order 24
| ''T''<sub>d</sub>, [3,3]<br>24
|- align=center
|- align=center
|[[五邊形六邊形五角十二面七十四面體]]
|[[五邊形六邊形五角十二面七十四面體]]
第51行: 第51行:
|
|
|
|
| ''T''<sub>h</sub>, [3<sup>+</sup>,4]<br>order 24
| ''T''<sub>h</sub>, [3<sup>+</sup>,4]<br>24
|- align=center
|- align=center
| [[倒角立方體]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C100A1cC cC]
| [[倒角立方體]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C100A1cC cC]
第66行: 第66行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''O''<sub>h</sub>, [4,3]<br>order 48
| ''O''<sub>h</sub>, [4,3]<br>48
|- align=center
|- align=center
| --
| --
第81行: 第81行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''D''<sub>6h</sub>, [6,2]<br>order 24
| ''D''<sub>6h</sub>, [6,2]<br>24
|- align=center
|- align=center
| --
| --
第96行: 第96行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''D''<sub>3h</sub>, [3,2]<br>order 12
| ''D''<sub>3h</sub>, [3,2]<br>12
|- align=center
|- align=center
| [[四階十二面體]]
| [[四階十二面體]]
第111行: 第111行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''T''<sub>d</sub>, [3,3]<br>order 24
| ''T''<sub>d</sub>, [3,3]<br>24
|- align=center
|- align=center
| [[部分截半截角八面體]]
| [[部分截半截角八面體]]
第141行: 第141行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''I''<sub>h</sub>, [5,3]<br>order 120
| ''I''<sub>h</sub>, [5,3]<br>120
|- align=center
|- align=center
| [[截半截角二十面體]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C400A1atI atI]
| [[截半截角二十面體]]<br>[https://levskaya.github.io/polyhedronisme/?recipe=C400A1atI atI]
第156行: 第156行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''I''<sub>h</sub>, [5,3]<br>order 120
| ''I''<sub>h</sub>, [5,3]<br>120
|- align=center
|- align=center
| 截角截角二十面體<br>[https://levskaya.github.io/polyhedronisme/?recipe=C1000ttI ttI]
| 截角截角二十面體<br>[https://levskaya.github.io/polyhedronisme/?recipe=C1000ttI ttI]
第171行: 第171行:
| 12
| 12
| 20
| 20
| ''I''<sub>h</sub>, [5,3]<br>order 120
| ''I''<sub>h</sub>, [5,3]<br>120
|- align=center
|- align=center
| 擴展截角二十面體<br>[https://levskaya.github.io/polyhedronisme/?recipe=C1000aatI etI]
| 擴展截角二十面體<br>[https://levskaya.github.io/polyhedronisme/?recipe=C1000aatI etI]
第186行: 第186行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''I''<sub>h</sub>, [5,3]<br>order 120
| ''I''<sub>h</sub>, [5,3]<br>120
|- align=center
|- align=center
| 扭稜截角二十面體<br>[https://levskaya.github.io/polyhedronisme/?recipe=C1000stI stI]
| 扭稜截角二十面體<br>[https://levskaya.github.io/polyhedronisme/?recipe=C1000stI stI]
第201行: 第201行:
| &nbsp;
| &nbsp;
| &nbsp;
| &nbsp;
| ''I'', [5,3]<sup>+</sup><br>order 60
| ''I'', [5,3]<sup>+</sup><br>60
|}
|}



2023年2月1日 (三) 14:22的版本

部分的擬詹森多面體

四階十二面體

部分截半截角八面體

五邊形六邊形
五角十二面七十四面體

截角三角化四面體

幾何學中,擬詹森多面體是嚴格凸多面體,其面幾乎都是正多邊形,但其中有部分或全部的面不是正多邊形但很接近正多邊形。這種多面體也包含詹森多面體,即所有的面都是正多邊形,而擬詹森多面體經常會在正多邊形與非正多邊形之間有物理構造上可以忽略的微小差異[1]。近似的精確值取決於這樣一個多面體的面逼近正多邊形的程度。

例子

名稱
康威多面體表示法
圖像 頂點布局英语Vertex configuration 頂點 F3 F4 F5 F6 F8 F10 F12 對稱性英语List of spherical symmetry groups
底面截角雙三角錐
t4dP3
2 (5.5.5)
12 (4.5.5)
14 21 9 3 6 Dih3
12階
截角三角化四面體
t6kT
4 (5.5.5)
24 (5.5.6)
28 42 16     12 4       Td, [3,3]
24階
五邊形六邊形五角十二面七十四面體 12 (3.5.3.6)
24 (3.3.5.6)
24 (3.3.3.3.5)
60 132 74 56 12 6 Th, [3+,4]
24階
倒角立方體
cC
24 (4.6.6)
8 (6.6.6)
32 48 18   6   12       Oh, [4,3]
48階
-- 12 (5.5.6)
6 (3.5.3.5)
12 (3.3.5.5)
30 54 26 12   12 2       D6h, [6,2]
24階
-- 6 (5.5.5)
9 (3.5.3.5)
12 (3.3.5.5)
27 51 26 14   12         D3h, [3,2]
12階
四階十二面體 4 (5.5.5)
12 (3.5.3.5)
12 (3.3.5.5)
28 54 28 16   12         Td, [3,3]
24階
部分截半截角八面體 24 (3.4.3.9)
24 (3.9.9)
38 84 48 24 6           Oh, [4,3]
倒角十二面體
cD
60 (5.6.6)
20 (6.6.6)
80 120 42     12 30       Ih, [5,3]
120階
截半截角二十面體
atI
60 (3.5.3.6)
30 (3.6.3.6)
90 180 92 60   12 20       Ih, [5,3]
120階
截角截角二十面體
ttI
120 (3.10.12)
60 (3.12.12)
180 270 92 60         12 20 Ih, [5,3]
120階
擴展截角二十面體
etI
60 (3.4.5.4)
120 (3.4.6.4)
180 360 182 60 90 12 20       Ih, [5,3]
120階
扭稜截角二十面體
stI
60 (3.3.3.3.5)
120 (3.3.3.3.6)
180 450 272 240   12 20       I, [5,3]+
60階

共面擬詹森多面體

有些未能成為詹森多面體的候選多面體是因為其存在有兩個以上共面的面,其也可以算是全部由正多邊形組成的凸多面體,只是其凸為非嚴格凸。[2]這些多面體可被看做是凸的面且非常接近正多邊形。這些立體通常有無限多種,但若約定所有頂點要位於頂角處,不能位於面(共面的一組面視為同一個面)的內部,則滿足條件的立體只有78個,可以視為詹森多面體的自然推廣[2](參見章節條件邊正多邊形凸多面體)。

例如: 3.3...:

4.4.4.4:

3.4.6.4:

部分的條件邊正多邊形凸多面體

側錐雙新月雙罩帳

二側錐八面體

正三角錐反角柱

同相雙三角柱

若將詹森多面體的條件放寬成允許面兩兩共面,且所有頂點都要嚴格位於頂角上,不能有邊兩兩共線的情況(若允許邊兩兩共線,則結果會有無窮多種情況),也不能夠有頂點位於共面區域內部的情況,則能夠再列出有限個有此特性的立體。條件邊(conditional edges)指的是對應棱的二面角為平角的邊。[2]在這條件下,能允許互相共面的面有正三角形與正三角形(3+3)、正三角形與正方形(3+4)、正三角形與正五邊形(3+5)、正方形和兩個位於對側的正三角形(3+4+3)、正五邊形和兩個不相鄰的正三角形(3+5+3),也就是說,這些立體除了有正多邊形面外,也會存在上述組合之形狀的面。[3]這類立體一共有78個。[2]和詹森多面體一樣,這些立體除了一些基本立體外,都能夠用柱體、錐體和28種立體互相組合而成。[3]亞歷克斯·多斯基(Alex Doskey[4]、羅傑·考夫曼(Roger Kaufman)和史蒂夫·沃特曼(Steve Waterman[5]在2006年列出了大部分有此性質的立體。2008年,維克多·扎加勒(Victor Zalgaller[6]和阿列克謝·維克多羅維奇·蒂莫芬科(Aleksei Victorovich Timofeenko[7]獨立發現並列出這些立體。2010年,蒂莫芬科證明這些立體只有78種。[7][8]

Pn,k[7] Sn[6] 名稱 組合 3D模型 頂點 F3 F4 F5 F6 F8 F10 F3+3 Fetc
Q1 Q1 斜六角柱 (基本立體) 12 18 8 2 2 4
Q2 Q2 六斜方十二面體 (hexarhombic dodecahedron (基本立體) 18 28 12 4 4 4
Q3 Q3 (未命名) (基本立體) 15 29 16 9 2 3 2
Q4 Q4 (未命名) (基本立體) 15 27 14 5 2 3 4
Q5 Q5 (未命名) (基本立體) 22 42 22 10 4 2 2 4
Q6 Q6 (未命名) (基本立體) 18 33 17 7 3 3 1 3
P2,2 S3 同相雙三角柱 三角柱 8 12 6 4 2
P2,3 S4 側三角柱立方體 三角柱+立方體 10 15 7 5 2
P2,4 S5 側三角柱五角柱 三角柱+五角柱 12 18 8 6 2
P2,22 S14 側錐四角錐 正四面體+四角錐 6 9 5 2 1 2
P2,25 S17 側錐三角台塔 三角台塔+四角錐 10 16 8 2 2 1 3
P2,29 S22 側錐雙新月雙罩帳 雙新月雙罩帳+五角錐 15 29 16 9 2 3 2
P2,30 S46 側錐五角丸塔 五角丸塔+五角錐 21 36 17 7 5 1 4
P2,31 S24 五角丸塔錐 五角丸塔+五角錐 21 35 16 5 5 1 5
P2,33 S2 側錐三角廣底球狀罩帳 三角廣底球狀罩帳+五角錐 19 38 21 12 3 2 1 3
P2,34 S1 異側鄰二側錐雙新月雙罩帳 雙新月雙罩帳+五角錐 16 32 18 10 2 2 4
P2,38 S59 單旋側台塔截角四面體 截角四面體+三角台塔 15 24 11 2 3 3 3
P2,42 S60 單旋側台塔截角立方體 截角立方體+四角台塔 28 44 18 4 5 5 4
P2,48 S63 單旋側台塔截角十二面体 截角十二面体+五角台塔 65 100 37 15 5 1 11 5
P3,1 S6 側錐同相雙三角柱 三角柱+四角錐 9 16 9 4 3 2
P3,2 S10 柱化異相雙三角柱 三角柱+立方體 12 18 8 4 4
P3,3 S11 柱化同相雙三角柱 三角柱+立方體 12 18 8 6 2
P3,4 S9 對側錐側三角柱立方體 三角柱+立方體+四角錐 11 19 10 4 4 2
P3,5 S12 間二側三角柱五角柱 三角柱+五角柱 14 21 9 7 2
P3,6 S13 間側錐側三角柱五角柱 三角柱+五角柱+四角錐 13 22 11 4 5 2
P3,22 S40 五角丸塔錐柱 五角丸塔+十角柱+五角錐 31 55 26 5 10 5 1 5
P3,31 S41 五角丸塔錐反棱柱 五角丸塔+五角反棱柱+五角錐 31 65 36 25 5 1 5
P3,33 S15 側錐八面體 正八面體+正四面體 7 12 7 4 3
P3,34 S18 側錐同相雙三角台塔 三角台塔+四角錐 13 25 14 6 5 3
P3,35 S20 側錐截半立方體 截半立方體+四角錐 13 24 13 4 5 4
P3,36 S23 對二側錐雙新月雙罩帳 雙新月雙罩帳+五角錐 16 32 18 10 2 2 4
P3,37 S47 間二側錐五角丸塔 五角丸塔+五角錐 22 37 17 4 4 1 8
P3,38 S48 罩帳側錐異相五角帳塔罩帳 五角丸塔+五角台塔+五角錐 26 51 27 12 5 6 4
P3,39 S49 罩帳側錐同相五角帳塔罩帳 五角丸塔+五角台塔+五角錐 26 51 27 12 5 6 4
P3,40 S27 側錐截半二十面体 截半二十面体+五角錐 31 60 31 15 11 5
P3,41 S52 側錐同相雙五角丸塔 同相雙五角罩帳英语Pentagonal orthobirotunda+五角錐 31 61 32 17 11 4
P3,42 S25 異相五角帳塔罩帳錐 五角帳塔+五角罩帳+五角錐 26 50 26 10 5 6 5
P3,43 S26 同相五角帳塔罩帳錐 五角帳塔+五角罩帳+五角錐 26 50 26 10 5 6 5
P3,44 S28 同相雙五角罩帳錐 五角罩帳+五角錐 31 60 31 15 11 5
P3,48 S61 單旋二側台塔截角立方體 截角立方體+四角台塔 32 56 26 8 10 4 4
P3,49 S62 雙旋二側台塔截角立方體 截角立方體+四角台塔 32 52 22 10 4 8
P3,51 S66 單旋間二側台塔截角十二面体 截角十二面体+五角台塔 70 115 47 20 10 2 10 5
P3,53 S64 單旋對二側台塔截角十二面体 截角十二面体+五角台塔 70 115 47 20 10 2 10 5
P3,54 S67 雙旋間二側台塔截角十二面体 截角十二面体+五角台塔 70 110 42 10 10 2 10 10
P3,55 S65 雙旋對二側台塔截角十二面体 截角十二面体+五角台塔 70 110 42 10 10 2 10 10
P4,1 S7 鄰二側錐同相雙三角柱 三角柱+四角錐 10 20 12 8 2 2
P4,2 S8 對二側錐同相雙三角柱 三角柱+四角錐 10 20 12 8 2 2
P4,5 S31 同相五角台塔丸塔柱錐 五角台塔+五角丸塔+十角柱+五角錐 36 70 36 10 15 6 5
P4,6 S32 異相五角台塔丸塔柱錐 五角台塔+五角丸塔+十角柱+五角錐 36 70 36 10 15 6 5
P4,7 S33 同相雙五角丸塔柱錐 五角丸塔+十角柱+五角錐 41 80 41 15 10 11 5
P4,8 S34 異相雙五角丸塔柱錐 五角丸塔+十角柱+五角錐 41 80 41 15 10 11 5
P4,9 S37 五角台塔丸塔反棱柱錐 五角台塔+五角丸塔+十角反棱柱+五角錐 36 80 46 30 5 6 5
P4,10 S38 雙五角丸塔反棱柱錐 五角丸塔+十角反棱柱+五角錐 41 90 51 35 11 5
P4,11 S16 二側錐八面體 正四面體+正八面體 8 12 6 6
P4,12 S19 間二側錐同相雙三角台塔 三角台塔+四角錐 14 26 14 4 4 6
P4,13 S21 對二側錐截半立方體 截半立方體+四角錐 14 24 12 4 8
P4,14 S50 間二側錐異相五角帳塔罩帳 五角帳塔+五角罩帳+五角錐 27 52 27 9 5 5 8
P4,15 S51 間二側錐同相五角帳塔罩帳 五角帳塔+五角罩帳+五角錐 27 52 27 9 5 5 8
P4,16 S44 間二側錐截半二十面体 截半二十面体+五角錐 32 60 30 10 10 10
P4,17 S53 同側間二側錐同相雙五角罩帳 五角罩帳+五角錐 32 62 32 14 10 8
P4,18 S29 對二側錐截半二十面体 截半二十面体+五角錐 32 60 30 10 10 10
P4,19 S57 異側鄰二側錐同相雙五角罩帳 五角罩帳+五角錐 32 62 32 14 10 8
P4,20 S58 異側對二側錐同相雙五角罩帳 五角罩帳+五角錐 32 62 32 14 10 8
P4,21 S42 異側側錐同相雙五角罩帳錐 五角罩帳+五角錐 32 61 31 12 10 9
P4,22 S30 同相雙五角罩帳雙錐 五角罩帳+五角錐 32 60 30 10 10 10
P4,25 S68 單旋三側帳塔截角十二面體 截角十二面体+五角帳塔 75 130 57 25 15 3 9 5
P4,26 S69 雙旋三側帳塔截角十二面體 截角十二面体+五角帳塔 75 125 52 15 15 3 9 10
P4,27 S70 三旋三側帳塔截角十二面體 截角十二面体+五角帳塔 75 120 47 5 15 3 9 15
P4,30 斜四角柱 正四面體+四角錐 8 12 6 2 4
P4,31 雙重側錐四角錐 (doubled augmented square pyramid

雙斜三角柱 (doubled oblique triangular prism
扭斜四角柱 (twist slant square prism

正四面體+四角錐 8 14 8 4 2 2
P5,1 S35 同相雙五角罩帳柱雙錐 五角罩帳+十角柱+五角錐 42 80 40 10 10 10 10
P5,2 S36 異相雙五角罩帳柱雙錐 五角罩帳+十角柱+五角錐 42 80 40 10 10 10 10
P5,3 S39 雙五角罩帳反棱柱雙錐 五角罩帳+十角反棱柱+五角錐 42 90 50 30 10 10
P5,4 S45 三側錐截半二十面体 截半二十面体+五角錐 33 60 29 5 9 15
P5,5 S55 異側連三側錐同相雙五角罩帳 五角罩帳+五角錐 33 63 32 11 9 12
P5,6 S56 異側偏三側錐同相雙五角罩帳 五角罩帳+五角錐 33 63 32 11 9 12
P5,7 S43 異側間二側錐同相雙五角罩帳錐 五角罩帳+五角錐 33 62 31 9 9 13
P6,1 S54 四側錐同相雙五角罩帳錐 五角罩帳+五角錐 34 64 32 8 8 16

參見

參考文獻

  1. ^ Kaplan, Craig S.; Hart, George W., Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons, Bridges: Mathematical Connections in Art, Music and Science (PDF), 2001 [2014-05-01], (原始内容存档 (PDF)于2015-09-23) .
  2. ^ 2.0 2.1 2.2 2.3 Robert R Tupelo-Schneck. Convex regular-faced polyhedra with conditional edges. 
  3. ^ 3.0 3.1 Robert R Tupelo-Schneck. Regular-faced Polyhedra. 
  4. ^ Alex Doskey. Convex Diamond-Regular Polyhedra. 
  5. ^ Steve Waterman. Convex hulls having regular diamonds. 
  6. ^ 6.0 6.1 Gurin, AM and Zalgaller, VA. On the history of the study of convex polyhedra with regular faces and faces composed of regular ones. Translations of the American Mathematical Society-Series 2. 2009, 228: 169. 
  7. ^ 7.0 7.1 7.2 Timofeenko, Aleksei Victorovich. Junction of noncomposite polygons. Algebra i Analiz (St. Petersburg Department of Steklov Institute of Mathematics, Russian~…). 2009, 21 (3): 165–209. 
  8. ^ Timofeenko, Aleksei Victorovich. Corrections to “Junction of noncomposite polyhedra”. St. Petersburg Mathematical Journal. 2012-08-01, 23 (4): 779–780 [2023-01-31]. ISSN 1061-0022. doi:10.1090/S1061-0022-2012-01217-3 (英语).