频率 (统计学):修订间差异
无编辑摘要 |
|||
第28行: | 第28行: | ||
| caption4 = 世界各國人口分佈的圓餅圖 |
| caption4 = 世界各國人口分佈的圓餅圖 |
||
}} |
}} |
||
'''頻率分佈'''(frequency distribution)可以呈現一個分為各互斥分組資料的情形,以及各組的數量。這是呈現未組織資料(例如選舉結果、某區域的的人口收入、畢業生助學貸款金額)的方式。呈現頻率分佈的圖表有[[直方图]]、[[条形图]]、[[折線圖]]及[[圓餅圖]]。頻率分佈可以用在量化和質化的資料。 |
'''頻率分佈'''(frequency distribution)可以呈現一個分為各互斥分組資料的情形,以及各組的數量。這是呈現未組織資料(例如選舉結果、某區域的的人口收入、畢業生助學貸款金額)的方式。呈現頻率分佈的圖表有[[直方图]]、[[条形图]]、[[折線圖]]及[[圓餅圖]]。頻率分佈可以用在量化和質化的資料。 |
||
===建構頻率分佈=== |
|||
# 決定分組組數。若統計的是量化的資料,需要決定分組的組數。組數太多或是太少會無法呈現資料的特性,也有可能很難依該組數來進行分組和分析。理想的分組組數可以參考:<math>\text{number of classes} = C = 1 + 3.3 \log n</math>(log是以10為基底),或是依直方圖的「方根公式」<math> C = \sqrt {n}</math>,其中''n''是資料的總數(若是像人口資料的統計,用後者會分太多組)。不過這些公式只是作為參,還是需要依實際情形作調整。 |
|||
# 用資料最大值和最小值計算資料全距{{nowrap begin}}(全距=最大值 – 最小值){{nowrap end}}。全距會用來決定每一組的寬度。 |
|||
# 決定每一組的寬度,以''h''來表示,公式為<math>h = \frac{\text{range}}{\text{number of classes}}</math>(假設每一組的寬度都相同)。 |
|||
一般來說每一組的寬度會相同。所有的組總和需要從數據中的最小值到最大值都包括在內。在頻率分佈上一般會傾向使用相同的組寬,不過有些時候使用不同的組寬(例如使用對數區問),才能完整的看到數據的資訊,避免有許多區間沒有資料,或是只有極少量資料的情形<ref>{{cite journal |last1=Manikandan |first1=S |date=1 January 2011 |title=Frequency distribution |journal=Journal of Pharmacology & Pharmacotherapeutics |volume=2 |issue=1 |pages=54–55 |doi=10.4103/0976-500X.77120 |issn=0976-500X |pmc=3117575 |pmid=21701652 |doi-access=free }}</ref>。 |
|||
# 決定第一組的下限。一般會小於或等於最小值。 |
|||
# 每觀測一個資料,就在其對應的分組加上一個記號,直到所有的資料都紀錄完為止。 |
|||
# 依需求計算頻率、相對頻率、累計頻率等資訊。 |
|||
以下是一些常用來呈現頻率分佈的圖表<ref>Carlson, K. and Winquist, J. (2014) ''An Introduction to Statistics''. SAGE Publications, Inc. Chapter 1: Introduction to Statistics and Frequency Distributions</ref>: |
|||
===直方圖=== |
|||
===長條圖=== |
|||
===頻率分佈表=== |
|||
===聯合頻率分佈=== |
|||
== 應用 == |
== 應用 == |
2024年6月26日 (三) 14:17的版本
统计学裡,一事件的频率,可以表示為,是在實驗中觀測到事件的次數,常表示為,也稱為絕對頻率,頻次或是次數[1]:12–19。例如在擲骰子100次的隨機實驗中,有16次擲出6點,則在該實驗中,「擲出6點」事件的頻率為16。
實務上,常會將各事件的頻率用圖表或是表格方式表示。
種類
累計頻率(cumulative frequency)是事件經排序後,在特定點以下之事件的絕對頻率總和。[1]:17–19。
某事件的實驗機率(也稱為相對頻率),是其絕對頻率除以所有事件總數後的正規化結果:
可以將所有事件的實驗頻率繪出,即為頻率分布(frequency distribution)。
頻率分佈
頻率分佈(frequency distribution)可以呈現一個分為各互斥分組資料的情形,以及各組的數量。這是呈現未組織資料(例如選舉結果、某區域的的人口收入、畢業生助學貸款金額)的方式。呈現頻率分佈的圖表有直方图、条形图、折線圖及圓餅圖。頻率分佈可以用在量化和質化的資料。
建構頻率分佈
- 決定分組組數。若統計的是量化的資料,需要決定分組的組數。組數太多或是太少會無法呈現資料的特性,也有可能很難依該組數來進行分組和分析。理想的分組組數可以參考:(log是以10為基底),或是依直方圖的「方根公式」,其中n是資料的總數(若是像人口資料的統計,用後者會分太多組)。不過這些公式只是作為參,還是需要依實際情形作調整。
- 用資料最大值和最小值計算資料全距(全距=最大值 – 最小值)。全距會用來決定每一組的寬度。
- 決定每一組的寬度,以h來表示,公式為(假設每一組的寬度都相同)。
一般來說每一組的寬度會相同。所有的組總和需要從數據中的最小值到最大值都包括在內。在頻率分佈上一般會傾向使用相同的組寬,不過有些時候使用不同的組寬(例如使用對數區問),才能完整的看到數據的資訊,避免有許多區間沒有資料,或是只有極少量資料的情形[2]。
- 決定第一組的下限。一般會小於或等於最小值。
- 每觀測一個資料,就在其對應的分組加上一個記號,直到所有的資料都紀錄完為止。
- 依需求計算頻率、相對頻率、累計頻率等資訊。
以下是一些常用來呈現頻率分佈的圖表[3]:
直方圖
長條圖
頻率分佈表
聯合頻率分佈
應用
處理和操作以表格化的事件頻率資訊,比處理原始資料會簡單多了。有簡單的演算法可以根據表格計算中位數、平均、標準差等。
假說檢定可以用來評估二個頻率分佈的差異和類似性。評估包括量測集中趋势,像是平均数及中位數,也會評估离散程度,像是標準差和方差。
若頻率分佈的平均和中位數有顯著差異,會稱為頻率分佈具有偏度,另一種說法則是非對稱。頻率分佈的峰度是量測在頻率分佈兩側的量在總量中的比例。若其分佈比常態分佈要分散,則稱為高狹峰(leptokurtic),反之,則為低狹峰(platykurtic)。
字母频率分佈可以用在频率分析上,用以破解密碼,也可以用來比較不同語言之間(例如希臘文、拉丁文)的字母相對頻率。
相關條目
參考資料
- ^ 1.0 1.1 Kenney, J. F.; Keeping, E. S. Mathematics of Statistics, Part 1 3rd. Princeton, NJ: Van Nostrand Reinhold. 1962.
- ^ Manikandan, S. Frequency distribution. Journal of Pharmacology & Pharmacotherapeutics. 1 January 2011, 2 (1): 54–55. ISSN 0976-500X. PMC 3117575 . PMID 21701652. doi:10.4103/0976-500X.77120 .
- ^ Carlson, K. and Winquist, J. (2014) An Introduction to Statistics. SAGE Publications, Inc. Chapter 1: Introduction to Statistics and Frequency Distributions