跳转到内容

频率 (统计学):修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
第1行: 第1行:
{{Translating|[[:en:Frequency (statistics)]]|tpercent=29|time=2024-06-26T04:57:32+00:00}}[[统计学]]裡,一[[事件 (概率论)|事件]]<math>i</math>的'''频率''',可以表示為<math>n_i</math>,是在[[實驗]]中觀測到事件<math>i</math>的次數,常表示為<math>n_i</math>,也稱為'''絕對頻率''','''頻次'''或是'''次數'''<ref name="Kenney">{{cite book | last1 = Kenney | first1 = J. F. | last2 = Keeping | first2 = E. S. | title = Mathematics of Statistics, Part 1 | edition = 3rd | url = https://books.google.com/books?id=UdlLAAAAMAAJ | location = Princeton, NJ | publisher = Van Nostrand Reinhold | year = 1962}}</ref>{{rp|12–19}}。例如在擲骰子100次的隨機實驗中,有16次擲出6點,則在該實驗中,「擲出6點」事件的頻率為16。
{{Translating|[[:en:Frequency (statistics)]]|tpercent=45|time=2024-06-26T04:57:32+00:00}}[[统计学]]裡,一[[事件 (概率论)|事件]]<math>i</math>的'''频率''',可以表示為<math>n_i</math>,是在[[實驗]]中觀測到事件<math>i</math>的次數,常表示為<math>n_i</math>,也稱為'''絕對頻率''','''頻次'''或是'''次數'''<ref name="Kenney">{{cite book | last1 = Kenney | first1 = J. F. | last2 = Keeping | first2 = E. S. | title = Mathematics of Statistics, Part 1 | edition = 3rd | url = https://books.google.com/books?id=UdlLAAAAMAAJ | location = Princeton, NJ | publisher = Van Nostrand Reinhold | year = 1962}}</ref>{{rp|12–19}}。例如在擲骰子100次的隨機實驗中,有16次擲出6點,則在該實驗中,「擲出6點」事件的頻率為16。


實務上,常會將各事件的頻率用圖表或是表格方式表示。
實務上,常會將各事件的頻率用圖表或是表格方式表示。

2024年6月26日 (三) 14:21的版本

统计学裡,一事件频率,可以表示為,是在實驗中觀測到事件的次數,常表示為,也稱為絕對頻率頻次或是次數[1]:12–19。例如在擲骰子100次的隨機實驗中,有16次擲出6點,則在該實驗中,「擲出6點」事件的頻率為16。

實務上,常會將各事件的頻率用圖表或是表格方式表示。

種類

累計頻率(cumulative frequency)是事件經排序後,在特定點以下之事件的絕對頻率總和。[1]:17–19

某事件的實驗機率英语Empirical probability(也稱為相對頻率),是其絕對頻率除以所有事件總數後的正規化結果:

可以將所有事件的實驗頻率繪出,即為頻率分布(frequency distribution)。

頻率分佈

直方图
美國2000年通勤所需時間的直方图
条形图
条形图,其中以國家為分类变量
3D条形图
水平3D條形圖
圓餅圖
世界各國人口分佈的圓餅圖
各種描繪頻率分佈的方法

頻率分佈(frequency distribution)可以呈現一個分為各互斥分組資料的情形,以及各組的數量。這是呈現未組織資料(例如選舉結果、某區域的的人口收入、畢業生助學貸款金額)的方式。呈現頻率分佈的圖表有直方图条形图折線圖圓餅圖。頻率分佈可以用在量化和質化的資料。

建構頻率分佈

  1. 決定分組組數。若統計的是量化的資料,需要決定分組的組數。組數太多或是太少會無法呈現資料的特性,也有可能很難依該組數來進行分組和分析。理想的分組組數可以參考:(log是以10為基底),或是依直方圖的「方根公式」,其中n是資料的總數(若是像人口資料的統計,用後者會分太多組)。不過這些公式只是作為參,還是需要依實際情形作調整。
  2. 用資料最大值和最小值計算資料全距(全距=最大值 – 最小值)。全距會用來決定每一組的寬度。
  3. 決定每一組的寬度,以h來表示,公式為(假設每一組的寬度都相同)。

一般來說每一組的寬度會相同。所有的組總和需要從數據中的最小值到最大值都包括在內。在頻率分佈上一般會傾向使用相同的組寬,不過有些時候使用不同的組寬(例如使用對數區問),才能完整的看到數據的資訊,避免有許多區間沒有資料,或是只有極少量資料的情形[2]

  1. 決定第一組的下限。一般會小於或等於最小值。
  2. 每觀測一個資料,就在其對應的分組加上一個記號,直到所有的資料都紀錄完為止。
  3. 依需求計算頻率、相對頻率、累計頻率等資訊。

以下是一些常用來呈現頻率分佈的圖表[3]

直方圖

長條圖

頻率分佈表

聯合頻率分佈

應用

處理和操作以表格化的事件頻率資訊,比處理原始資料會簡單多了。有簡單的演算法可以根據表格計算中位數、平均、標準差等。

假說檢定可以用來評估二個頻率分佈的差異和類似性。評估包括量測集中趋势,像是平均数中位數,也會評估离散程度,像是標準差方差

若頻率分佈的平均和中位數有顯著差異,會稱為頻率分佈具有偏度,另一種說法則是非對稱。頻率分佈的峰度是量測在頻率分佈兩側的量在總量中的比例。若其分佈比常態分佈要分散,則稱為高狹峰(leptokurtic),反之,則為低狹峰(platykurtic)。

字母频率分佈可以用在频率分析上,用以破解密碼,也可以用來比較不同語言之間(例如希臘文、拉丁文)的字母相對頻率。

相關條目

參考資料

  1. ^ 1.0 1.1 Kenney, J. F.; Keeping, E. S. Mathematics of Statistics, Part 1 3rd. Princeton, NJ: Van Nostrand Reinhold. 1962. 
  2. ^ Manikandan, S. Frequency distribution. Journal of Pharmacology & Pharmacotherapeutics. 1 January 2011, 2 (1): 54–55. ISSN 0976-500X. PMC 3117575可免费查阅. PMID 21701652. doi:10.4103/0976-500X.77120可免费查阅. 
  3. ^ Carlson, K. and Winquist, J. (2014) An Introduction to Statistics. SAGE Publications, Inc. Chapter 1: Introduction to Statistics and Frequency Distributions