陈模型
外观
在金融,陳模型是一個數學模型,描述的演變利率。它是一種類型的“三因素模型”(短期利率模型),因為它描述利率變動作為推動三個來源的市場風險。這是第一个隨機均值和隨機波動率模型,並刊登在1994年。陈琳,是哈佛大學毕业的經濟學家,一直為美國哈佛大學,新加坡國立大學,貝魯特美國大學,延世大學,美林,里昂信貸銀行和聯邦儲備局。
該動態瞬時利率指定由隨機微分方程:
在一個有權威的對現代金融(連續時間方法在金融學:回顧與評價 ),陳模型被列為主要的期限結構模型。
不同變種的陳模型仍然繼續使用,全球金融機構。詹姆斯和韋伯的教科书有一節專門討論陳模型在。他們的著作,吉布森等人,專門一節,以支付他們的陳模型的評論文章。安德森等人,奉獻一份文件,研究和推廣陳模型。浩等人,奉獻一份文件,測試陳模型和其他模型;蔡致力於她的博士論文陳模型來測試和其他競爭機型。
相关条目
参看
- Lin Chen. Stochastic Mean and Stochastic Volatility — A Three-Factor Model of the Term Structure of Interest Rates and Its Application to the Pricing of Interest Rate Derivatives. Financial Markets, Institutions, and Instruments. 1996, 5: 1–88.
- Lin Chen. Interest Rate Dynamics, Derivatives Pricing, and Risk Management. Lecture Notes in Economics and Mathematical Systems, 435. Springer. 1996. ISBN 978-3540608141.
- Jessica James and Nick Webber. Interest Rate Modelling. Wiley Finance. 2000.
- Rajna Gibson,François-Serge Lhabitant and Denis Talay. Modeling the Term Structure of Interest Rates: A Review of the Literature. RiskLab, ETH. 2001.
- Frank J. Fabozzi and Moorad Choudhry. The Handbook of European Fixed Income Securities. Wiley Finance. 2007.
- Sanjay K. Nawalkha, Gloria M. Soto, Natalia A. Beliaeva. Dynamic Term Structure Modeling: The Fixed Income Valuation Course. Wiley Finance. 2007.
- Sundaresan, Suresh M. Continuous-Time Methods in Finance: A Review and an Assessment. The Journal of Finance. 2000, 55 (54): 1569–1622. doi:10.1111/0022-1082.00261.
|number=
和|issue=
只需其一 (帮助) - Andersen, T.G., L. Benzoni, and J. Lund. Stochastic Volatility, Mean Drift, and Jumps in the Short-Term Interest Rate,. Working Paper, Northwestern University. 2004.
- Gallant, A.R., and G. Tauchen. Estimation of Continuous Time Models for Stock Returns and Interest Rates,. Macroeconomic Dynamics 1, 135-168. 1997,.
- Cai, L. Specification Testing for Multifactor Diffusion Processes:An Empirical and Methodological Analysis of Model Stability Across Different Historical Episodes (PDF). Rutgers University. 2008. 参数
|title=
值左起第108位存在換行符 (帮助)