跳转到内容

环 (代数)

维基百科,自由的百科全书

这是本页的一个历史版本,由BillSmith留言 | 贡献2010年2月4日 (四) 04:52 环的理想编辑。这可能和当前版本存在着巨大的差异。

的定義类似于可交换群,只不过在原有的「+」的基础上又增添另一种运算「·」(注意我们这里所说的 + 與 · 一般不是通常意义下我们所熟知的加法乘法)。在抽象代数中,研究的分支为环论

定义

集合R和定义于其上的二元运算 + 和·,(R, +, ·)构成一个,若它们满足:

  1. (R, +)形成一个交换群,其幺元称为零元素,记作‘0’。即:
    • (a + b) = (b + a)
    • (a + b) + c = a + (b + c)
    • 0 + a = a + 0 = a
    • ∀a ∃(−a) 满足 a + −a = −a + a = 0
  2. (R, ·)形成一个半群,即:
    • (a·b)·c = a·(b·c)
  3. 乘法关于加法满足分配律:
    • a·(b + c) = (a·b) + (a·c)
    • (a + b)·c = (a·c) + (b·c)

其中,乘法运算符·常被省略,所以 a·b 可简写为 ab。 此外,乘法是比加法优先的运算,所以 a + bc 其实是 a + (b·c)。

基本性质

考虑一个环R,根据环的定义,易知R有以下性质:

  • ∀a∈R,a·0 = 0·a = 0;(这也是为什么0作为加法群的幺元,却被称为“零元素”)
  • ∀a,b∈R,(-a)·b = a·(-b) = -(a·b);

环的相关概念

特殊的环

幺环
若环R中,(R, ·)构成幺半群。即:∃1∈R,使得∀a∈R,有1·a=a·1=a。则R称为幺环。此时幺半群(R, ·)的幺元1,亦称为环R的幺元。
交换环
若环R中,(R, ·)还满足交换律,从而构成交换半群,即:∀a,b∈R,有ab=ba,则R称为交换环
无零因子环
若R中没有非0的零因子,则称R为为无零因子环
  • 此定义等价于以下任何一条:
    • R\{0}对乘法形成半群;
    • R\{0}对乘法封闭;
    • R中非0元素的乘积非0;
整环
无零因子的交换幺环称为整环

例:整数环,多项式环

唯一分解环
若整环R中每个非零非可逆元素都能唯一分解,称R是唯一分解环.
除环
若环R是幺环,且R\{0}对R上的乘法形成一个,即:∀a∈R\{0},∃a^{-1}∈R\{0},使得a^{-1}·a=a·a^{-1}=1。则R称为除环
  • 除环不一定是交换环。反例:四元数环。
  • 交换的除环是
主理想环
每个理想都是主理想的整环称为主理想环
单环
若幺环R中的极大理想是零理想,则称R为单环
商环
素环

例子

  • 集环:非空集的集合R构成一个环,当且仅当它满足以下几个条件中任何一个:
    • R对集合的并和差运算封闭,即:∀E,F∈R ⇒ E∪F∈R,E-F∈R;
    • R对集合的交和对称差运算封闭,即:∀E,F∈R ⇒ E∩F∈R,E△F∈R;
    • R对集合的交,差以及无交并运算封闭。
这样得到的集环以交为乘法,对称差为加法;以空集为零元,并且由于∀E∈R,E∩E=E·E=E,因此它还是布尔环

环的理想

考虑环(R, +, ),依环的定义知(R, +)是阿贝尔群。集合I ⊆ R,则称I为R的右理想,若I满足:

  1. (I, +) 构成 (R, +) 的子群。
  2. ∀i ∈ I,r ∈ R,有ir ∈ I。

类似地,I称为R的左理想,若I满足:

  1. (I, +) 构成 (R, +) 的子群。
  2. ∀i ∈ I,r ∈ R,有ri ∈ I。

若I既是R的右理想,也是R的左理想,则称I为R的双边理想,简称理想

示例

  • 整数环的理想:整数环Z只有形如的nZ理想。

基本性质

  • 在环中,(左,右,双边)理想的和与交仍然是(左,右,双边)理想。
  • 在除环中,(左,右)理想只有平凡(左,右)理想。
  • 对于环R的两个理想A,B,记。则由定义易知:
    1. 若A是R的左理想,则AB是R的左理想;
    2. 若B是R的右理想,则AB是R的右理想;
    3. 若A是R的左理想,B是R的右理想,则AB是R的双边理想。
  • 如果A环R的一个非空子集,令<A>=RA+AR+RAR+ZA,则<A>是环R的理想,这个理想称为R中由A生成的理想, A称为生成元集。同群的生成子群类似,<A>是R中所有包含A的理想的交,因此是R中包含A的最小理想。下面是生成理想的几种特殊情况:
    1. 当R是交换环时,<A>=RA+ZA
    2. 当R是幺环时,<A>=RAR
    3. 当R是交换幺环时,<A>=RA

相关概念

  • 主理想:如果是个n元集合,则记,称是有限生成理想.特别当是单元素集时,称为环R的主理想。注意作为生成元一般不是唯一的,如的一般形式是:
  • 性质:
几类特殊环中的主理想:
  • (1) 如果是交换环,则
  • (2) 如果是有单位元的环,则
  • (3) 如果是有单位元的交换环,则
  • 真理想: 如果I是R的真子集,I就叫做R的真理想。
  • 极大理想: 一个真理想I被称为R的极大理想,如果沒有其他真理想J,使得I是J的真子集。
  • 极大左理想:设 I 是环R的左理想,如果并且在 I 与R之间不存在真的左理想,则称 I 是环R的一个极大左理想。极大左理想与极大理想之间有如下关系:
    • (1)如果 I 是极大左理想,又是双边理想,则 I 是极大理想。
    • (2)极大理想未必是极大左理想。
  • 除环的零理想是极大理想。在有单位元的环中,如果零理想是其极大理想,称这种环是单环。除环是单环,域也是单环。反之则不对,即存在不是除环的单环。
  • 定理1 在整数环Z中,由p生成的主理想是极大理想的充分必要条件是:p是素数。
  • 定理2 设R是有单位元1的交换环。理想 I 是R的极大理想的充分且必要条件是:商环是域。
  • 定理3 设 I 是环R的左理想,则 I 是R的极大左理想的充分必要条件是对R的任意一个不含在 I 中的左理想J都有
  • 素理想:真理想I被称为R的素理想,如果对于R的任意理想A,B, 可推出
  • 素环:如果环R的零理想是素理想,则称R是素环(或质环)。无零因子环是素环。在交换环R中,真理想 I 是素理想的充分且必要条件是:是素环.
  • 半素理想:设 I 是环R的理想,并且。如果对任意理想P,由,可得,则称 I 是环R的半素理想。

  显然,半素理想是一类比素理想相对较弱条件的理想,因为素理想是半素理想,但半素理想未必是素理想。

有关环的其它概念

  • 零因子 (zero divisor):
设b是环中的非零元素,称a为左零因子,如果ab=0;同样可以定义右零因子。通称零因子;