陈模型
外观
在金融,陈模型是一个数学模型,描述的演变利率。它是一种类型的“三因素模型”(短期利率模型),因为它描述利率变动作为推动三个来源的市场风险。这是第一个随机均值和随机波动率的利率模型,并刊登在1994年。陈琳,是哈佛大学毕业的经济学家,一直为美国哈佛大学,新加坡大学,贝鲁特美国大学,延世大学,美林证券,里昂信贷银行和美国联邦储备局。
该动态瞬时利率指定由随机微分方程:
在一个权威的对现代金融的评论(连续时间方法在金融学:回顾与评价 ),陈模型被列为主要的期限结构模型。
不同变种的陈模型仍然继续使用,全球金融机构。詹姆斯和韦伯的教科书有一节专门讨论陈模型在。他们的著作,吉布森等人,专门一节,以支付他们的陈模型的评论文章。安德森等人,奉献一份文件,研究和推广陈模型。浩等人,奉献一份文件,测试陈模型和其他模型;蔡致力于她的博士论文陈模型来测试和其他竞争机型。
相关条目
参看
- Lin Chen. Stochastic Mean and Stochastic Volatility — A Three-Factor Model of the Term Structure of Interest Rates and Its Application to the Pricing of Interest Rate Derivatives. Financial Markets, Institutions, and Instruments. 1996, 5: 1–88.
- Lin Chen. Interest Rate Dynamics, Derivatives Pricing, and Risk Management. Lecture Notes in Economics and Mathematical Systems, 435. Springer. 1996. ISBN 978-3540608141.
- Jessica James and Nick Webber. Interest Rate Modelling. Wiley Finance. 2000.
- Rajna Gibson,François-Serge Lhabitant and Denis Talay. Modeling the Term Structure of Interest Rates: A Review of the Literature. RiskLab, ETH. 2001.
- Frank J. Fabozzi and Moorad Choudhry. The Handbook of European Fixed Income Securities. Wiley Finance. 2007.
- Sanjay K. Nawalkha, Gloria M. Soto, Natalia A. Beliaeva. Dynamic Term Structure Modeling: The Fixed Income Valuation Course. Wiley Finance. 2007.
- Sundaresan, Suresh M. Continuous-Time Methods in Finance: A Review and an Assessment. The Journal of Finance. 2000, 55 (54): 1569–1622. doi:10.1111/0022-1082.00261.
|number=
和|issue=
只需其一 (帮助) - Andersen, T.G., L. Benzoni, and J. Lund. Stochastic Volatility, Mean Drift, and Jumps in the Short-Term Interest Rate,. Working Paper, Northwestern University. 2004.
- Gallant, A.R., and G. Tauchen. Estimation of Continuous Time Models for Stock Returns and Interest Rates,. Macroeconomic Dynamics 1, 135-168. 1997,.
- Cai, L. Specification Testing for Multifactor Diffusion Processes:An Empirical and Methodological Analysis of Model Stability Across Different Historical Episodes (PDF). Rutgers University. 2008. 参数
|title=
值左起第108位存在换行符 (帮助)