逻辑综合
在电子学中,逻辑综合(英語:logic synthesis)是所需电路的抽象形式(通常是寄存器传输级),转换到以逻辑门为基础的设计目标的过程。通常,逻辑综合包括了硬件描述语言——主要是VHDL和Verilog HDL。某些工具能够在可编程逻辑器件,如可编程阵列逻辑(Programmable Array Logic, PAL)和现场可编程逻辑门阵列(Field Programmable Gate Array, FPGA)上生成位元流,而另一些工具则可以设计专用集成电路。逻辑综合是电子设计自动化的一个方面。
历史
逻辑综合的发展可以追溯到乔治·布尔(1815-1864)对逻辑代数的研究(逻辑代数现在也被称为“布尔代数”)。1938年,克劳德·香农展示了如何使用逻辑代数来描述电路开关切换的过程。在早期,逻辑设计牵涉了对真值表的处理(如利用卡诺图)。通过将一系列规则将卡诺图上的某些项进行合并,可以得到最小化的逻辑,即逻辑式可以得到简化。通常上述的人工操作可以处于四到六个变量的卡诺图。
对逻辑最小化进行自动化的第一步是引入奎因-麦克拉斯基算法,它可以在计算机上执行。XXX。现在,更为高效的Espresso启发逻辑简化法成为了这一工程的标准工具。早期的另一个研究领域是对有限状态机的简化和编码,这一工作在当时对设计者来说还不容易。逻辑综合的应用大多于数字计算机设计相关。这样,IBM和贝尔实验室在逻辑综合自动化的早期扮演了关键的角色。从分立的逻辑门到可编程逻辑阵列(Programmable logic arrays, PLA)促进了高校的两级逻辑最小化的发展,这是由于两级描述中的最小化条件可以减少可编程逻辑阵列的面积。
然而,两级的逻辑电路在超大规模集成电路中的重要程度受到限制。大多数的设计者使用多级逻辑。实际情况是,几乎所有电路的寄存器传输级(Register-transfer level, RTL)描述或其他行为描述都是多级的。早期IBM的LSS曾被用来设计多级电路。它使用了局部的变形来简化逻辑。LSS以及Yorktown Silicon编译系统在1980年代促进了逻辑综合的研究进程。一些大学将这些研究领域公开,其中加州大学伯克利分校的SIS、加州大学洛杉矶分校的RASP以及科罗拉多大学博尔德分校的BOLD最为知名。在十几年的时间内,逻辑综合技术迅速转变成市场上销售的电子设计自动化产品。