核糖體核糖核酸
核糖體RNA(ribosomal RNA, rRNA)是生物細胞中主要的核糖核酸之一,是一種具有催化能力的核糖酶,但其單獨存在時不能發揮作用,僅在與多種核糖體蛋白質共同構成核糖體(一種無膜細胞器)後才能執行其功能。23S和28S rRNA在翻譯過程中作為肽酰轉移酶催化多肽(包括蛋白質)中氨基酸之間肽鍵的形成。rRNA是單鏈RNA,但通過摺疊形成了廣泛的雙鏈區域。
原核生物與真核生物中的rRNA
生物種類 | 類型 | 大亞基 | 小亞基 |
原核生物 | 70S | 50S(5S、23S) | 30S(16S) |
真核生物 | 80S | 60S(5S、5.8S和28S) | 40S(18S) |
注意:「S」(沉降速度)這個單位是不能直接簡單相加的,因為它代表沉降速度的度量而不是質量。每個亞基的沉降速度既受到其形狀的影響,又受到其質量的影響。
70S核糖體中的rRNA
原核細胞及真核細胞內共生體的70S核糖體中包含3種沉降係數不同的rRNA,其中30S核糖體亞基中包含16S rRNA,50S核糖體亞基中包含5S rRNA和23S rRNA。[1]這3種rRNA在結構上有明顯的不同。[2]
編碼細菌三種rRNA的基因常被按16S-23S-5S的順序組合在同一操縱子中共同轉錄。在細菌基因組中,往往有多個rRNA操縱子(例如大腸桿菌有七個:rrnA、B、C、D、E、G和H[3] ),當其中一部分被敲除後,仍可通過基因轉換的方式從其他操縱子上獲得。[4]古菌則存在只有單組rRNA操縱子的情況。
30S rRNA前體
70S核糖體中的16S和23S rRNA由30S rRNA前體經加工產生,30S rRNA前體的相對分子質量約為2 MDa。在該加工過程中,30S rRNA前體的特定鹼基被甲基化,然後經水解斷裂產生17S和25S rRNA中間產物,再經核酸酶的作用去除少量核苷酸殘基才最終分別得到16S和23S rRNA。而5S rRNA是從30S rRNA的3'端分離的。[5]
16S rRNA
原核生物的30S核糖體亞基中含有16S rRNA。16S rRNA的相對分子質量約為0.6 MDa,[6]長度約為1540 nt。[7]在30S核糖體亞基組裝過程中,16S rRNA與其核糖體蛋白質S4、S7、S8、S15、S17和S20結合先行成初級複合物。[8]
16S rRNA約有一半的核苷酸形成鏈內鹼基對,使其具有約60個螺旋;分子中未配對部分則形成突環。在濃度足夠的Mg2+存在下分離得到的16S rRNA處於緊密狀態,與30S核糖體亞基的結構相似。已發現16S rRNA中的一些序列與蛋白質合成時30S核糖體亞基、mRNA及一些翻譯因子的結合有關。[9]核糖體16S rRNA的3'端能識別待翻譯mRNA的5'端的夏因-達爾加諾序列,[10]起始翻譯。另有研究表明,16S rRNA也能與進入核糖體P位點的tRNA相互作用。[11]
16S rRNA作為研究分類學和系統進化的分子[12]受到很大重視,[13]16S rRNA序列分析是當前對細菌進行分類學研究中較精確的一種技術。[14]隨着分子生物學的快速發展以及該技術在醫學微生物研究中的應用,對16S rRNA作為微生物分類依據的研究也逐漸發展起來[15]並已得到廣泛認同。[16]
位於原核生物70S核糖體A位點的16S rRNA部分的是氨基糖苷類抗生素的作用靶位,該類抗生素通過與16S rRNA的A位點結合而阻礙原核翻譯。[17]但由質粒介導的16S rRNA甲基化酶能將16S rRNA甲基化,從而導致細菌產生對該類抗生素較高的抗藥性。[18]
5S rRNA
基本上所有70S核糖體與80S核糖體(除了少數真菌、少數原生動物和少數較高級動物的線粒體核糖體[19])的大亞基中都含有5S rRNA。
5S rRNA相對分子質量約為40 kDa,[6]長度約為120 nt,[20]分子中有5個螺旋。[21]它在70S核糖體的50S核糖體亞基中與核糖體蛋白質L5、L18及L25結合。[22]5S rRNA約60%的核苷酸形成了鏈內鹼基對。[9]已有研究表明,5S rRNA具有一個與tRNA特定序列互補的序列。[23]
70S核糖體中的5S rRNA被認為是一種傳感裝置,能促進核糖體中各功能中心的交流並組織翻譯的進行。[24][25]缺少5S rRNA的核糖體的肽酰轉移酶活性會下降。[26]
23S rRNA
23S rRNA的相對分子質量約為1.2 MDa,[6]長度約為2900 nt,[27]分子一半以上核苷酸以分子內雙鏈形式存在,[9]產生超過100個螺旋。[28] 它在70S核糖體的50S亞基中與核糖體蛋白質L1、L2、L3、L4、L9和L23結合形成初級複合物。[29]對緊密狀態下23S rRNA的電鏡研究表明,23S rRNA的形狀與50S核糖體亞基相似。[9]
23S rRNA是核糖體催化功能的核心,[30]其結構域Ⅴ具有肽酰轉移酶活性。[31]位於核糖體P位點的23S rRNA部分有特定區域能與進入核糖體的tRNA形成互補鹼基對。[32]
P位點的23S rRNA部分是大環內酯類抗生素的作用靶位,該類抗生素通過與23S rRNA阻礙肽鏈延伸。但一些細菌可利用erm基因介導23S rRNA甲基化酶[33]使23S rRNA的甲基化,[34]從而降低核糖體對抗生素的親合性;也有細菌能通過核糖體變構來影響抗生素作用。[35]
80S核糖體中的rRNA
80S核糖體中包含4種沉降係數不同的rRNA,其中,40S核糖體亞基(小亞基)中包含18S rRNA,而60S核糖體亞基(大亞基)中包含5S rRNA、5.8S rRNA和28S rRNA。
28S、5.8S與18S rRNA由單獨的一個轉錄單位(45S rDNA)所轉錄,它們之間被兩個內轉錄間隔區分隔。[36]45S rDNA被組織於5基因簇中,每個簇中大約有30-40次重複(真核生物在串聯重複序列中通常擁有多個rDNA的備份),人類大概有300-400個rDNA重複段存在於五個基因簇中(分別在13、14、15、21和22號染色體上)。
45S rRNA前體
80S核糖體中的28S rRNA、5.8S rRNA和18S rRNA由長度約為14,000 nt的45S rRNA前體在細胞核的核仁加工產生。加工過程中,該rRNA前體的100多個核苷酸會被甲基化,再經過一系列酶促反應被剪切成幾條RNA鏈。[5]
18S rRNA
18S rRNA是16S rRNA的同源RNA,其相對分子質量約為0.7 MDa,[6]長度約為1900 nt。[27]18S rRNA除了比16S rRNA稍長且多一些臂和環結構外,兩者空間結構十分相似,[9]在核糖體中起到的作用也基本相同。
5S rRNA
真核細胞中的5S rDNA存在於串聯重複基因中(大約有200-300個真5S rDNA,且另有許多分散的假基因),人類的最大的一個位於1號染色體長臂41號帶-42號帶上。5S rDNA與其餘三種80S核糖體的rRNA的基因不同,該基因並不位於核仁組織區,且由RNA聚合酶III所轉錄。
5.8S rRNA
5.8S rRNA的相對分子質量約為40 kDa,[6]長度約為160 nt。[27]也存在於古菌細胞中。
核糖體中的5.8S rRNA被認為起到輔助核糖體易位的作用。[37]
5.8S rRNA可以用作探測miRNA的內參基因。[38]
28S rRNA
28S rRNA是23S rRNA的同源RNA,其相對分子質量約為1.7 MDa,[6]長度約為4700 nt。[27]真核生物28S rRNA的結構與大腸桿菌23S rRNA的相似。[9]
其他rRNA
- 哺乳動物細胞的線粒體中含有一種55S核糖體,其28S核糖體亞基(小亞基)中含有長度約為950 nt的12S rRNA,其39S核糖體亞基(大亞基)中則含有長度約為1560 nt的另一種16S rRNA。[27]
rRNA的重要性
- rRNA是所有細胞中都會表達的基因,即所有擁有細胞結構的生物都擁有rRNA[39]。因此可以通過對編碼rRNA的基因進行測序來對某種生物進行分類學上的分類、計算出相關的種群或估測物種的差異度。已有逾千種rRNA已被測序,測序的結果被儲存在特殊的數據庫(如RDP-II[40]和SILVA[41])中。
- 核糖體中的rRNA是多種臨床有關抗生素的靶位點,例如:巴龍黴素可特異性地與原核生物核糖體的30S小亞基的A區(該區存在16S rRNA)結合,干擾翻譯過程的正常進行[42]。其他通過與rRNA反應起到殺菌作用的抗生素還有:氯黴素、紅黴素、春雷黴素、微球菌素、蓖麻毒素、帚麴黴素、大觀黴素、鏈黴素及硫鏈絲黴素。
研究價值
在近年的系統發育樹中,rRNA序列(尤其是小亞基rRNA,SSU rRNA)成爲最常用的做樹依據,因爲SSU rRNA具有以下特點:
- 長度適中,通常為1200-1900 nt,能夠提供足夠的信息但又不過長。
- 完全廣泛分佈於所有具有細胞結構的生物,而且進化過程相對緩慢。其中保守區可用於構建所有生命的統一進化樹,而易變的區域可用來區別屬或者種。
- rRNA基因的水平轉移非常難發生,因爲它們的功能十分基本且重要,需要翻譯機制的精細調控才能夠正常實現功能。
相關基因
MRPL1、 MRPL2、 MRPL3、 MRPL4、 MRPL5、 MRPL6、 MRPL7、 MRPL8、 MRPL9、 MRPL10、 MRPL11、 MRPL12、 MRPL13、 MRPL14、 MRPL15、 MRPL16、 MRPL17、 MRPL18、 MRPL19、 MRPL20、 MRPL21、 MRPL22、 MRPL23、 MRPL24、 MRPL25、 MRPL26、 MRPL27、 MRPL28、 MRPL29、 MRPL30、 MRPL31、 MRPL32、 MRPL33、 MRPL34、 MRPL35、 MRPL36、 MRPL37、 MRPL38、 MRPL39、 MRPL40、 MRPL41、 MRPL42
參見
參考資料
- ^ 王鏡岩、朱聖庚、徐長法. 生物化学第三版. 北京市西城區德外大街4號: 高等教育出版社. 2002年: 474. ISBN 7-04-011088-1 (簡體中文).
- ^ K. A. Hartman and G. J. Thomas Jr. Secondary Structure of Ribosomal RNA. Science. 1970, 170: 740–741. doi:10.1126/science.170.3959.740.
- ^ Hillebrand A,Wurm R,Menzel A,Wagner R. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem. 2005. PMID 16006239.
- ^ David Ammons and Joanne Rampersad. An E. coli 5S rRNA Deletion Mutant Useful for the Study of5SrRNAStructure/Function Relationships (PDF) 43. 2000. doi:10.1007/s002840010266.
- ^ 5.0 5.1 聶劍出、吳國利、張翼伸、楊紹鍾、劉鴻銘. 生物化学简明教程. 北京市東城區沙灘后街55號: 高等教育出版社. 2002年: 265–266. ISBN 7-04-007259-9 (簡體中文).
- ^ 6.0 6.1 6.2 6.3 6.4 6.5 核糖體相關信息
- ^ Jurgen Brosius, Margaret L. Palmer, Poindexter J. Kennedy, and Harry F. Noller. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichiacoli (recombinant plasmids/DNA sequence analysis/rrnB cistron) (PDF). Biochemistry. 1978: 4801–4805.
- ^ Hamacher K, Trylska J, McCammon JA. Dependency Map of Proteins in the Small Ribosomal Subunit. PLoS Comput. Biol. 2006, 2. PMID 16485038.
- ^ 9.0 9.1 9.2 9.3 9.4 9.5 聶劍出、吳國利、張翼伸、楊紹鍾、劉鴻銘. 生物化学简明教程. 北京市東城區沙灘后街55號: 高等教育出版社. 2002年: 59–60. ISBN 7-04-007259-9 (簡體中文).
- ^ Shine J, Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975, 254 (5495): 34–8. PMID 803646. doi:10.1038/254034a0.
- ^ Noller HF,Hoang L,Fredrick K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett. 2005: 855–858. PMID 15680962.
- ^ Woese C, Kandler O, Wheelis M. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.. Proc Natl Acad Sci USA. 1990, 87 (12): 4576–9. PMC 54159 . PMID 2112744. doi:10.1073/pnas.87.12.4576.
- ^ 陳國忠、李文均、徐麗華、姜成林. 16S rRNA二级结构的研究进展及其在系统分类中的应用. Journal of Microbiology. 2005年, 25.
- ^ 郭亞輝. 根据16S rRNA序列对假单胞菌属分类学的研究进展. Journal of Microbiology. 2004年, 24.
- ^ 劉楊、崔曉龍、李文均、彭謙. RNA二级结构在微生物系统发育分析上的应用. Microbiology. 2006年, 33.
- ^ 張志明、孫海英、李建平. 16S rRNA在医学微生物鉴定中的应用. International Journal of Laboratory Medicine. 2010年, 31. doi:10.3760/cma.j.issn.1673-4130.2010.04.017.
- ^ 吳瓊、倪語星. 一种新的氨基糖苷类耐药决定因子:质粒介导的16S rRNA甲基化酶. Journal of Microbes and Infection. 2009年, 4.
- ^ 周穎傑、余慧、郭慶蘭、徐曉剛、葉信予、吳湜、郭燕、王明貴. 16S rRNA甲基化酶在氨基糖苷类抗生素耐药革兰阴性菌中的分布. 中國感染與化療雜誌. 2010年, 10.
- ^ Gray, M.W., Burger, G.&Lang, B.F. Mitochondrial evolution. Science. 1999: 1476–1481. PMID 10066161.
- ^ Barciszewska MZ,Szymański M,Erdmann VA,Barciszewski J. Structure and functions of 5S rRNA. Acta Biochim. 2001: 191–198. PMID 11440169.
- ^ Luehrsen, Kenneth R. ; Fox, George E. Secondary Structure of Eukaryotic Cytoplasmic 5S Ribosomal RNA. PNAS. 1981, 78 (4): 2150–2154. doi:10.1073/pnas.78.4.2150.
- ^ Paulw. Huber and Ira G. Wool. Nuclease protection analysis of ribonucleoprotein complexes: Use of the cytotoxic ribonucleasea-sarcinto determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA (PDF). Biochemistry. 1984: 322–326. 參數
|title=
值左起第137位存在換行符 (幫助) - ^ George E. FoxandCarl R. Woese. The architecture of 5S rRNA and its relation to function (PDF). Journal of Molecular Olecular Evolution: 61–76. doi:10.1007/BF01732674.
- ^ Alexey A. Bogdanov, Olga A. Dontsova, Svetlana S. Structure and function of 5S rRNA in the ribosome. Biochem. Cell Biol. 1995: 869–876. doi:10.1139/o95-094.
- ^ Dokudovskaya S,Dontsova O,Shpanchenko O,Bogdanov A,Brimacombe R. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA. 1996: 146–152. PMID 8601281.
- ^ Khaitovich P,Mankin AS. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5S rRNA.. J Mol Biol. 1999: 1025–1034. PMID 10518910.
- ^ 27.0 27.1 27.2 27.3 27.4 核糖體相關信息2
- ^ H F Noller, J Kop, V Wheaton, J Brosius, R R Gutell, A M Kopylov, F Dohme, W Herr, D A Stahl, R Gupta, and C R Waese. Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res. 1981: 6167–6189. PMID PMC327592 請檢查
|pmid=
值 (幫助). - ^ Otfried Marquardt, Hans E.Roth, Gabriele Wystup and Knud H. Binding of Escherichia coli ribosomal proteins to 23SRNA under reconstitution conditions for the SOS subunit. Nucleic Acids Research. 1979, 6: 3641–3650. 參數
|title=
值左起第93位存在換行符 (幫助) - ^ HF Noller, V Hoffarth, and L Zimniak. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992: 1416–1419.
- ^ Functional interactions within 23S rRNA involving the peptidy ltransferase center. J Bacteriol. 1992, 174: 1333–1338. PMID PMC206429 請檢查
|pmid=
值 (幫助). - ^ Samaha RR,Green R,Noller HF. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature. 1995: 309–314. PMID 7566085.
- ^ Leclercq R,Courvalin P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chenmother. 2002: 2727–2734.
- ^ Van Eldere J,Meekers E,Lagrou K; et al. Macrolide resistance mechanisms in Streptococcus pneumoniae isolates from Belgium. Clin Microbiol Infect. 2005: 332–334.
- ^ Doktor S Z,Shortridge V D,Beyer J M; et al. Epidemiology ofmacrolide and/or lincosamide resistant Streptococcus pneumoniae clinical isolates with ribosomal mutations. Diagn Microbiol Infect Dis. 2004: 4752.
- ^ 孫雋、文建凡. 不同寻常的贾第虫rDNA. 《中國細胞生物學學會2005年學術大會、青年學術研討會論文摘要集》. 2005.
- ^ Abou, Elela S; Nazar RN. Role of the 5.8S rRNA in ribosome translocation. Nucleic Acids Res. 1997, 25 (9): 1788–1794. PMC 146658 . PMID 9108162. doi:10.1093/nar/25.9.1788.
- ^ Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. BioTechniques. 2005, 39 (4): 519–25 [2010-09-15]. PMID 16235564. doi:10.2144/000112010. 已忽略未知參數
|month=
(建議使用|date=
) (幫助) - ^ Smit S, Widmann J, Knight R. Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res. 2007, 35 (10): 3339–54. PMC 1904297 . PMID 17468501. doi:10.1093/nar/gkm101.
- ^ Cole, JR; Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 2003, 31 (1): 442–3. PMC 165486 . PMID 12520046. doi:10.1093/nar/gkg039.
- ^ Pruesse, E; Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gloeckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35 (1): 7188–7196. PMC 2175337 . PMID 17947321. doi:10.1093/nar/gkm864.
- ^ 張旭東. 两类氨基糖苷类抗生素与16S rRNA A位点相互作用的理论研究. 2005.
外部連結
- 「SILVA」rRNA數據庫計劃(包含真核細胞rRNA(18S)及核糖體大亞基rRNA(23S/28S))
- 歐洲核糖體小亞基rRNA數據庫
- rRNA數據庫計劃Ⅱ
- 16S rRNA,BioMineWiki
- Small subunit ribosomal RNA, 5' domain的Rfam頁面
- 醫學主題詞表(MeSH):Ribosomal+RNA