跳转到内容

再入

维基百科,自由的百科全书

这是本页的一个历史版本,由Time killer留言 | 贡献2014年10月18日 (六) 09:16编辑。这可能和当前版本存在着巨大的差异。

火星探测漫游者(MER)的整流罩在进入火星大气时情形的艺术想象图

返回式,指的是在离开行星大气层进入宇宙空间后能安全返回到行星表面的一类航天器,通常用来运输设备和人员。航天飞机神舟飞船的返回舱和隼鸟号的样品舱便属于该类。它们备有特殊的设计来避免在返回过程中因高速、摩擦、高温和振动等问题危及载荷的安全。

原理

人造或者自然物体从宇宙空间进入天体大气层的过程被称作进入大气层(Atmospheric entry),在地球的场合指的是从宇宙空间一侧越过海拔为100km的卡门线的过程。从地面发射后离开大气层的人造航天载具重新进入大气层的过程被称作返回大气层(Atmospheric reentry)或再进入(reentry)。返回大气层根据其目的和过程被分为以下类型:

目的(原因) 过程是否可控 是否破坏性
航天器安全降落到行星表面
洲际弹道导弹弹道飞行后半程
人为消灭航天器或太空垃圾 否,或任由其轨道自然衰减
太空碰撞等意外而导致的返回

返回式航天器的设计以安全可控地回到地面为目的。由于在目前的技术条件下返回大气层时航天器的速度极高,因此非破坏性返回的过程一般需要有特殊的措施来保护航天器避免受到气动力加热和震动、冲击等损害。由于载人航天一定有航天员返回地面的过程,因此这一过程也成为载人航天中风险较高的环节之一。

历史

这种双层隔热板概念在1920年由罗伯特·戈达德提出,他说:"流星进入大气层的速度高达每秒30英里,但内部依然寒冷。因此,假如再返回物的表面覆盖一层抗高温(不易变质及难熔解)的物质后再用一层不太会导热的耐高温物质,这样物体表面就不会受到太多的侵蚀"(节录)

而第一次实际应用到此系统是在洲际弹道导弹的再入速度增加所导致的摩擦热。早期的弹道导弹,如V2火箭,并没有此问题。而中程弹道导弹,如苏联的R-5(有1200km)的射程,就需要陶瓷复合材料来保护。首个洲际弹道导弹(ICBM,射程达8000至12000km),则已正式进入了现代保护材料的时代。在美国,这技术是由H. Julian Allen再Ames Research率先开发。而苏联的Yuri A. Dunaev也曾在列宁格勒物理技术研究所开发类似的技术。

飞行器的形状

钝形飞行器

在美国的H. Julian Allen一伙人在1951年发现了钝形(high drag)隔热板。而从原理中显示,钝形隔热板效率最佳,因为返回式航天器的摩擦热与阻力系数成反比,即阻力愈大,热负荷愈低。艾伦和埃格斯的发现,最初被视为军事秘密,但于1958年出版。钝形理论的设计成为可行的隔热板,都体现在水星、双子星和阿波罗太空舱,使宇航员返回火热的地球大气层时仍生存。苏联的R-7洲际弹道导弹于1957年使用尖鼻的弹头成功首次试射,但击中目标区10公里以外,因而改为钝鼻的弹头。苏联的隔热层由多层玻璃纤维与石棉textolite组成。