嫪丽切拉函数
外观
{{inuse|24小时]] Lauricella超几何函数是1893年意大利数学Giuseppe Lauricella首先研究的三元超几何函数。
其中 |x1| + |x2| + |x3| < 1
其中 |x1| < 1, |x2| < 1, |x3| < 1
其中|x1|½ + |x2|½ + |x3|½ < 1
其中 |x1| < 1, |x2| < 1, |x3| < 1. Here the Pochhammer symbol (q)i indicates the i-th rising factorial of q, i.e.
where the second equality is true for all complex except .
通过解析延拓,可将 x1, x2, x3等变数扩展到其他数值.
Lauricella指出,另外还有十个三元超几何函数: FE, FF, ..., FT (Saran 1954).
n 元推广
当 n = 2,时 the Lauricella 超几何函数化为二元阿佩尔函数 :
当 n = 1, a则化为超计划函数:
FD积分式
参考文献
- Appell, Paul; Kampé de Fériet, Joseph. Fonctions hypergéométriques et hypersphériques; Polynômes d'Hermite. Paris: Gauthier–Villars. 1926. JFM 52.0361.13 (French). (see p. 114)
- Exton, Harold. Multiple hypergeometric functions and applications. Mathematics and its applications. Chichester, UK: Halsted Press, Ellis Horwood Ltd. 1976. ISBN 0-470-15190-0. MR 0422713.
- Lauricella, Giuseppe. Sulle funzioni ipergeometriche a più variabili. Rendiconti del Circolo Matematico di Palermo. 1893, 7 (S1): 111–158. JFM 25.0756.01. doi:10.1007/BF03012437 (Italian).
- Saran, Shanti. Hypergeometric Functions of Three Variables. Ganita. 1954, 5 (1): 77–91. ISSN 0046-5402. MR 0087777. Zbl 0058.29602. (corrigendum 1956 in Ganita 7, p. 65)
- Slater, Lucy Joan. Generalized hypergeometric functions. Cambridge, UK: Cambridge University Press. 1966. ISBN 0-521-06483-X. MR 0201688. (there is a 2008 paperback with ISBN 978-0-521-09061-2)
- Srivastava, Hari M.; Karlsson, Per W. Multiple Gaussian hypergeometric series. Mathematics and its applications. Chichester, UK: Halsted Press, Ellis Horwood Ltd. 1985. ISBN 0-470-20100-2. MR 0834385. (there is another edition with ISBN 0-85312-602-X)
外部链接
- Ronald M. Aarts. Lauricella Functions. MathWorld.