跳转到内容

拓撲量子場論

维基百科,自由的百科全书

这是本页的一个历史版本,由Liana留言 | 贡献2015年4月26日 (日) 09:54 数学表述:​ 内容扩充)编辑。这可能和当前版本存在着巨大的差异。

拓扑量子场论(又称拓扑场论,简称TQFT)是计算拓扑不变量量子场论

虽然拓扑量子场论由物理学家发明,但是在数学上也具有重要意义,与纽结理论代数拓扑中的4-流形英语4-流形代数几何中的模空间等分支均有联系。唐纳森沃恩·琼斯威滕孔采维奇都因对拓扑场论方面的研究而获得菲尔兹奖

凝聚体物理学中,拓扑量子场论是拓扑有序态的低能有效理论,例如分数量子霍尔态弦网凝聚态及其他强关联液态自旋量子

综述

在拓扑量子场论中,相关函数并不取决于时空的度量。这意味着理论对时空形状的改变不敏感:时空弯曲或收缩时,相关函数并不因此改变。因此,它们是拓扑不变量。

在粒子物理学中常用的、平坦的閔可夫斯基時空中,拓扑场论并不十分有趣。这是由于闵可夫斯基空间可以被收缩成一点,所以其中的TQFT只计算出平凡的拓扑不变量。因此,TQFT通常在黎曼曲面等弯曲的时空上研究。大多数已知的拓扑场论定义在5维的弯曲时空中。更高维度的拓扑场论似乎存在,但人们未能清楚理解这些理论。

量子引力被相信是背景独立的(在某种意义上),而TQFT恰好能提供背景独立的量子场论的例子。这一特性促进了现行的对此类模型的理论探索。

(注意:常有说法指出TQFT只有有限多的自由度。这并不是TQFT的一个基本性质,而是恰好在物理学家考虑的大多数例子中成立,但不是一个必要条件。目标空间为无限维射影空间的拓扑σ-模型——若此模型能被成功定义——将拥有可数无穷多个自由度。)

具体模型

已知的拓扑场论可分为两个大类:施瓦茨类TQFT与威腾类TQFT。后者有时被称为上同调场论。

施瓦茨类TQFT

在施瓦茨类TQFT中,系统的相关函数配分函数可由度量独立的作用量泛函路径积分计算出来。例如,在BF模型中,时空为二维流形 M,可观察量由2-形式 F、辅助标量 B以及它们的导数所构造得到。作用量(决定了路径积分)为

时空度量在理论任何地方都没有出现,因此这个理论显然是拓扑不变的。第一个TQFT的例子于1977年由A. Schwarz给出,它的作用量泛函是

另一个较为著名的例子是陈–西蒙斯理论,可用于计算纽结不变量。一般而言配分函数取决于度量,但以上两例得证为度量独立。

威腾类TQFTs

第一个威腾类TQFT的例子出现于威腾1988年的论文(Witten 1988a)中,即4维的拓扑杨–米尔斯理论。虽然其中的作用量泛函包含时空度量 gαβ,但是在拓扑扭曲之后,理论变为度量独立。而系统应力-能量张量 Tαβ 对度量的独立性则取决于BRST-算子是否闭合。遵循着威腾的例子,人们在拓扑弦论中找到了大量其它的例子。

数学表述

最初的阿蒂亚—西格尔公理

格雷姆·西格尔英语Graeme Segal所提出的共形場論的公理和威腾的超对称的几何意义的想法(Witten 1982)的启示,阿蒂亚提出了一套拓扑量子场论的公理(Atiyah 1988a)。阿蒂亚的公理建立于以可微变换(或以拓扑变换/连续变换)粘合边界,类比于西格尔公理中所使用的共形变换。这套公理对于施瓦茨类TQFT的数学处理相对有用,但其如何体现威腾类TQFT的全部结构却不清楚。公理的基本思路是将TQFT视为从某个特定配边范畴向量空间的范畴的一个函子

有两套不同的公理都可被称作阿蒂亚公理。它们的区别基本在于所研究的TQFT是定义在某个单一固定的n 维黎曼/洛仑兹时空M 中,或者是同时定义在所有n 维时空中。

设Λ为带单位元的交换环(出于现实考虑,我们几乎只研究Λ = ZRC)。对于定义在基环Λ上的d 维TQFT,阿蒂亚最初提议的公理如下:

  • 对每个已定向闭合光滑d 维流形Σ,赋予一个有限生成的Λ-模Z(Σ)(对应于同倫 公理),
  • 对每个带边界的已定向光滑(d+1)维流形M,赋予一个元素Z(M) ∈ Z(∂M)(对应于可加性 公理)。

这些数据需满足如下公理(其中公理4和5为阿蒂亚所加的):

  1. Z 满足关于Σ与M 的保向微分同胚函子性
  2. Z对合 的,即Z(Σ*) = Z(Σ)*,其中Σ*为Σ取相反定向,而Z(Σ)* 代表Z(Σ)的对偶模。
  3. Z可乘的
  4. Z(φ) = Λ 当φ是d 维空流形,以及Z(φ) = 1 当φ是(d+1)维空流形。
  5. Z(M*) = Z(M)埃尔米特 公理)。等价地,Z(M*)是Z(M)的伴随。

注意.如果对闭合流形 M 我们视Z(M)为一个数值不变量,那么对带边流形我们应视Z(M) ∈ Z(∂M)为“相对”不变量。设f : Σ × I → Σ × I为保向微分同胚,然后通过f 粘合Σ × I 的两端。这样我们得到流形Σf,而公理蕴涵了

这里Σ(f)指Z(Σ)上的诱导自同构。

注意.M 是一个边界为Σ的带边流形,我们总能构造其“双倍”、闭合流形。第五条公理表明

其中等式右边我们计算由(可能是未定的)埃尔米特度量中的范数。

与物理的联系

物理上,公理(2)和(4)与相对论不变性有关,而公理(3)和(5)则说明理论的量子本质。

Σ意指物理空间(在标准物理中通常取d = 3),而Σ × I 中的额外维度是“虚构”的时间。空间Z(Σ) 是量子理论的希尔伯特空间,而带有哈密顿算符H 的物理理论将具有时间演化算子eitH 或“虚构时间”算子e−tH拓扑 量子场论的主要特色是H = 0,这一特征蕴涵了圆柱Σ × I 上并无实动态或传播。然而,非平凡的“传播”(或称穿隧振幅)却可以通过中介流形从Σ0传到Σ1;这反映出M 的拓扑性质。

若∂M = Σ,那么希尔伯特空间Z(Σ)中特别的向量Z(M)可被看作又M 定义的真空态。对于闭合流形M 数值Z(M)即真空期望值。类比于统计力学,它又称为配分函数

理论中哈密顿算符为零的原因可通过费曼对量子场论的路徑積分表述合理地解释。它整合了相对论不变性(适用于一般(d+1)维“时空”),且理论在形式上可由适当的拉格朗日量——该理论中经典场的泛函——定义。若拉格朗日量形式上只涉及时间上的一阶导数,它将导出零哈密顿算符,但拉格朗日量本身可以拥有非平凡的特性,将其与流形M 联系起来。

阿蒂亚的例子

d = 0

d = 1

d = 2

d = 3

固定时空的情况

同时考虑所有n 维时空

后续发展

另见

参考资料