跳转到内容

驻点

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是本页的一个历史版本,由紫薇戀情留言 | 贡献2016年1月10日 (日) 15:58编辑。这可能和当前版本存在着巨大的差异。

y = x + sin(2x) 的圖像
驻點(紅色)與拐点(藍色),這圖像的驻點都是局部極大值或局部極小值。
y = x3 的圖像
原點(0,0)是驻点,但不是局部極值。

微積分驻点Stationary Point)又稱為臨界點Critical Point)或平穩點,即函數在該點的一階導數為零或不存在,也就是說若 為臨界點/駐點則

在這一點,函數的輸出值停止增加或減少。

对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。

值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某設定區域內,一个函数的极值点也不一定是这个函数的驻点(考慮到邊界條件)。

靜態平衡系統

分析力學裏,虛功原理闡明,對於一個靜態平衡(static equilibrium)系統,所有外力的作用,經過虛位移,所作的虛功,總合等於零,以方程式表達,

其中,是虛功,是第個外力,是對應於的虛位移。

轉換為以廣義力廣義坐標表達,

假設這系統是保守系統,則每一個廣義力都是一個純量廣義位勢函數的對於其對應的廣義坐標的導數

虛功與廣義位勢的關係為

所以,一個靜態平衡系統的位勢乃是個局域平穩值。注意到這系統只處於平穩狀態。假設,要求這這系統處於穩定狀態,則位勢必須是個局域極小值

歐拉-拉格朗日方程式

變分法裏,歐拉-拉格朗日方程式是從其對應的泛函的平穩點推導出的一種微分方程式。設定

使泛函取得局部平穩值,則在區間內對於所有的,歐拉-拉格朗日方程式成立:

参见