跳转到内容

魔術正方體

维基百科,自由的百科全书

这是本页的一个历史版本,由NHC留言 | 贡献2018年3月29日 (四) 07:09 See also:​ // Edit via Wikiplus)编辑。这可能和当前版本存在着巨大的差异。

一個3 × 3 × 3簡易魔術正方體的例子。 In this example, no slice is a magic square. In this case, the cube is classed as a 简易魔术正方体.

数学方面論述,魔術正方體維度上相當於幻方,也就是以n × n × n 方式排列的方體,在每個線段交點填上任意不重複的整数,並使得每行、每列及每個柱上數字的和相同。而此立方體的幻方常數表示為M3(n).[1]若魔術立方體由數列1, 2, ..., n3構成,則可以證明該數列列為「魔術常數」。(OEIS數列A027441

另外,如果每個截面對角線上的數字總合亦是該立方體的幻數,則此立方體被稱為完美魔方英语perfect magic cube;若非,他被稱呼為半完美魔方英语semiperfect magic cube。The number n is called the order of the magic cube. If the sums of numbers on a magic cube's broken space diagonal英语broken space diagonals also equal the cube's magic number, the cube is called a pandiagonal cube.

如同魔術方塊一般, a bimagic cube has the additional property of remaining a magic cube when all of the entries are squared, a trimagic cube remains a magic cube under both the operations of squaring the entries and of cubing the entries.[1] (Only two of these are known, as of 2005.) A tetramagic cube英语tetramagic cube remains a magic cube when the entries are squared, cubed, or raised to the fourth power.

Magic cubes based on Dürer's and Gaudi Magic squares

A magic cube can be built with the constraint of a given magic square appearing on one of its faces Magic cube with the magic square of Dürer, and Magic cube with the magic square of Gaudi

參見

References

  1. ^ 1.0 1.1 W., Weisstein, Eric. Magic Cube. mathworld.wolfram.com. [2016-12-04] (英语). 

Template:Magic polygons