乙型轉化生長因子 ( TGF-β )
乙型轉化生長因子(Transforming Growth Factor Beta, TGF-β)
是存在於『每個人體內的免疫調節因子』,幫助改善過敏體質、調節免疫系統正常發展。
TGF-β有三種異構物,其中『TGF-β2』是近年熱門研究議題,其調節免疫的四大關鍵作用:
1. 減少發炎現象:透過調節型T細胞,幫助免疫系統平衡,減少發炎物質。
2. 降低過敏反應:減少IgE(免疫球蛋白E)所引起的過敏指數,降低人體的過度敏感。
3. 提昇食物耐受性:幫助人體建立耐受性,減緩食物中外來蛋白質造成人體過敏的機率。
4. 抵抗病毒、細菌入侵:促進IgA(免疫球蛋白A)分泌,幫助腸道黏膜發展,抵抗外來物質侵害。
5. 避免遭受A型流感病毒H1N1感染,及減少嚴重度、縮短病程。
人體TGF-β2的含量多寡與免疫系統平衡高度相關
常見的遺傳性過敏疾病,如:異位性皮膚炎、氣喘、過敏性鼻炎等,體內均『缺少TGF-β2免疫調節因子』
根據國際期刊發表,長期補充TGF-β2可增加體內濃度,改善體質、減少發炎、減緩過敏指數、修復組織、延長母乳對嬰幼童的保護力,提升身體對食物耐受性、維持消化道機能,是嬰幼兒及成人免疫系統健康的重要來源。除此之外,TGF-β2參與其他疾病的機轉,包括抗腎臟纖維化、促進傷口癒合、改善乾癬、乾燥症、紅斑性狼瘡、全身性硬化症、多發性硬化症、類風濕性關節炎等自體免疫疾病[1]。
人體臨床案例中,即有患者藉長期補充TGF-β2逐漸降低類固醇使用量,並獲得病情改善等情況,由於安全性非常高,至今TGF-β2已廣泛被應用於小兒及成人過敏免疫風濕科的臨床案例。
母乳含有TGF-β2,幫助孩童免疫系統健全發展
從演化上推論,人類會將符合孩童成長需求的營養保留在母乳裡,從國際研究發現,母乳中也含有TGF-β2,能幫助免疫系統發育完整,大幅降低過敏病徵誘發機率,但它在母乳中的含量會在哺乳至三個月後快速減少,一般乳製品不含有TGF-β2,主因為本身含量稀少,也無法保持其活性,只有特殊的萃取方式才能獲得[2]
TGF-β2參與人體免疫反應TH1-TH2 的平衡
人體存在兩種免疫反應,可分為
1. 第一型幫助型T細胞(TH1)媒介的正常免疫防禦反應:
負責感染性微生物的免疫防禦機轉
若TH1細胞功能過度旺盛,引起發炎反應的細胞激素分泌,例如介白素-2(Interleukin-2, IL-2)和干擾素γ(Interferon-γ, IFN-γ)等,提升細胞性免疫反應,攻擊人體的特定組織或特殊細胞,造成該人體某些組織或器官的長期的傷害,尤其是自體免疫疾病及器官移植排斥。
2. 第二型幫助型T細胞(TH2)媒介的過敏免疫防禦反應:
負責寄生蟲、叮咬蟲類、過敏原與刺激物對障壁層器官的免疫防禦機轉
若TH2細胞功能過度旺盛,導致 TH2細胞激素分泌量過高,促使B細胞產生大量過敏抗體 IgE,IgE會誘發肥大細胞或嗜鹼性白血球細胞釋出發炎物質,如組織胺、介白素、細胞激素、血小板活化因子等,作用在細胞或血管上,造成血管舒張及平滑肌收縮,導致過敏性氣喘、過敏性鼻炎、異位性皮膚炎等過敏症狀產生。
此兩種免疫力在人體內是以天秤式的平衡來呈現,TH1及TH2兩者互相平衡,且共同受到調節型細胞 (Treg) 與免疫調節因子(TGF-β2)的調控,讓身體免疫防禦系統TH1及TH2維持平衡,即可達到預防自體免疫疾病及過敏相關疾病的作用。
結構
不同的TGF-β異構體間在結構上具有很高比例的相似(大約70~80%)。 整個TGF-β家族皆編碼於一個巨大的蛋白前驅物上;TGF-β1具有390個胺基酸TGF-β2和TGF-β3具有412個胺基酸。
TGF-βN端皆具有一個長20~30個胺基酸序列作為訊號胜肽(TGF-β被分泌出細胞的訊號依據)也就是所謂的pro-region(latency associated peptide或稱為LAP)。 後面112-114個C端胺基酸序列則在蛋白前驅物被裂解(proteolytic cleavage)後為成為成熟的TGF-β分子
成熟的TGF-β次單元會形成25 kDa有活性的二聚體(dimer),其中許多保守結構(conserved structural motifs) 。其中一個例子:整個TGF-β家族都有9個 半胱胺酸,這9個半胱胺酸中8個會2個為一組 雙硫鍵形成cysteine knot,而這個結構即為整個TGF-β超家族的共同特徵,第9個半胱胺酸則會與另外一個次單元的半胱胺酸形成雙硫鍵產生雙聚體。 其他的TGF-β保守結構多為藉由疏水性交互作用(hydrophobic interactions)形成的二級結構。
第5跟第6個半胱胺酸之間含有最多胺基酸序列變異的區域,而這段區域即是TGF-β分子暴露在外,讓不同受體對不同TGF-β辨認結合的區域。
功能
TGF-β可以結合到細胞表面的TGF-β受體結合而激活其受體。TGF-β受體是絲氨酸/蘇氨酸激酶受體。[3]其信號傳遞可以通過SMAD信號通路[4] 和/或DAXX信號通路[5]
SMAD 途徑
SMAD途徑是TGF-β家族進行傳遞訊息的經典範例。 此途徑會經過以下步驟進行訊息傳遞
- TGF-β雙聚體會結合到 type II 受體
- type II受體會吸引並磷酸化type I受體
- 磷酸化後的type I受體吸引並磷酸化regulated SMAD(R-SMAD)
- 磷酸化後的R-SMAD會結合上common SMAD(coSMAD、SMAD4)並形成異元二聚體(heterodimeric complex)
- 該異元二聚體會進入細胞核中作為多種基因表現的轉譯因子,包括利用8種途徑活化促分裂蛋白質激酶(mitogen-activated protein kinase)的產生,進而引發細胞凋亡。
而SMAD途徑本身被回饋作用所調控,SMAD6與SMAD7可結合上type I受體,造成該受體無法與R-SMAD結合導致訊息中斷
DAXX 途徑
TGF-β也可能藉由死亡相關蛋白(death associated protein 6 (DAXX adapter protein))啟動細胞凋亡程序
現在已知DAXX會與type II的TGF-β受體激酶結合影響接下來對type I受體的磷酸化
細胞週期
TGF-β在調控細胞週期中扮演很重要的角色
TGF-β促使細胞合成p15與p21蛋白,而這兩種蛋白會抑制可以把 Retinoblastoma protein (Rb) 蛋白磷酸化的 cyclin(細胞週期蛋白):CDK 複合體。也因此 TGF-β 可以間接抑制 c-myc 這個促進 G1期繼續進行基因的表現[6]。
免疫系統
- TGF-β被認為能調控免疫系統中的Foxp3+調節T細胞:將effector T-cells(會攻擊腫瘤細胞)轉化成regulatory (suppressor) T-cells。以及能分化CD4+細胞中Foxp3+ Regulatory T cell 和 Th17 cells
- TGF-β的存在會停止活化淋巴球、單核球這類的吞噬細胞
細胞的發展與分化 TGF-β在某些情況下可以作為漸變式(graded)型態發生素,造成未成熟的細胞可以進行不同功能性的分化
臨床意義
TGF-β2預防及改善過敏相關疾病
TGF-β2改善過敏相關疾病:氣喘、過敏性鼻炎、異位性皮膚炎、舒緩過敏症狀,例如搔癢、氣喘呼吸急促而費力胸悶等情形
- 降低52%呼吸道發炎細胞[7]
- 72%嗜酸性白血球浸潤[7]
- 修復黏膜[7]
- 降低呼吸道阻力[7]
- 降低42% 過敏指數IgE[7]
- 降低Th2分泌的促發炎細胞素;減少84% IL-4、75% IL-5及51% IL-13[7]
- 誘導調節型T細胞(Treg) 增生、分化與活化,進而調控過敏免疫平衡[7]
- 降低產生黏液的mRNA,減少黏液分泌阻塞氣管通道[8]
- 降低呼吸道IL-13刺激MUC5AC和MUC5B生成減少黏液分泌阻塞氣管通道[8]
- 抵制iNOS產生,鞏固對抗自由基的防禦[9]
- 2013年國際權威期刊英國營養學期刊、2010&2011中華民國風濕暨免疫學會論文集中皆指出,TGF-β2對過敏、氣喘與免疫失調相關疾病的病人提供相當機會降低類固醇的使用劑量。
- TGF-β2能預防及改善異位性皮膚炎:
➔ 異位性皮膚炎的媽咪,其寶寶亦受遺傳因素影響,TGF-β含量相對較少[10]
➔ 人體研究發現:18位9.6個月的異位性皮膚炎的嬰兒,體內TGF-β2明顯不足,證實TGF-β2缺陷可能導致異位性皮膚炎[11]
➔ 9名異位性皮膚炎孩童(≤18歲)體內TGF-β2比正常人少29 %[12]
➔ 人體研究發現:TGF-β可預防異位性皮膚炎[13][14][15]
➔ 益生菌、魚油改善異位性皮膚炎的作用,亦是透過TGF-β2[16][17]
➔ 哺餵母乳可降低寶寶異位性皮膚炎的風險,然而,過敏體質的母親較正常母親,其母乳中TGF-β2濃度約減少22%[18]
➔ TGF-β2可降低的異位性皮膚炎反覆發作,可作為該類患者輔助治療[19][20][21][22],有持續性異位性皮膚炎的幼兒,成長後較易發生呼吸道過敏疾病,因此,建
議在2歲以前減少異位性皮膚炎的嚴重度,有助於日後延緩過敏疾病
TGF-β2 可維持腸屏障穩健,改善食物過敏,降低腸道、氣管、皮膚發炎,舒緩症狀[23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40]
- 維持腸道上皮黏膜功能完整性,防止過敏原滲漏進入腸黏膜
- 可保持腸屏障功能完整性,建立腸道免疫耐受性,降低Th2細胞所造成的過敏免疫發炎反應,故被認定有助於改善過敏
- 可促進IgA生產,增強腸上皮細胞屏障功能,在鼻、咽、氣管、腸和膀胱黏膜的表面皆存在IgA,它能抑制毒素及微生物在黏膜上皮附著、減緩病毒繁殖、抵抗外來抗原進入體內。
- 新生兒腸道發育中,轉化生長因子-β2(TGF-β2)扮演重要作用,新生兒腸道中TGF-β2生物活性來自於:腸上皮細胞和母乳,腸上皮細胞(IEC)是腸道中TGF-β2的主要來源的細胞
- TGF-β2可以保護新生兒腸黏膜發炎,新生兒內源性TGF-β2仍然不足,尤其在早產兒族群,TGF-β2在腸道的表現甚低,可能會影響生長發育,尤其易患壞死性小腸結腸炎(NEC),建議提早補充TGF-β2是提升人體免疫的新手段
- TGF-β2降低IEC細胞凋亡和NEC發展,從而使細胞體內平衡
- 口服攝入TGF-β2已確定可以促進新生兒-胃腸道的腸道屏障功能、提升免疫耐受性和黏膜修復
- 人體實驗中發現,TGF-β2可抑制腸道巨噬細胞、細胞激素量和黏膜發炎反應
- 動物實驗中發現,TGF-β2可以防止腸壞死,如新生兒壞死性結腸炎
- 早產的母親,其母乳中TGF-β2含量少
- 在腸上皮細胞(IEC)中, TGF-β2主導抗發炎作用: 抑制促發炎細胞激素:IL-6及IL-8的分泌 、加強腸屏障功能,藉由向上調節tight junction proteins 增加上皮細胞層修復 、TGF-β2 減少IFN- γ 和 IL-6、TGF-β2 抑制腸道中肥大細胞和嗜酸性粒細胞的浸潤
- TGF-β2可調控腸黏膜細胞凋亡 ,機轉為:調節細胞凋亡相關蛋白Bcl-xL和Bcl-2
- TGF-β2可保護胃腸道的適應症
- 飲食補充TGF-β2已被證明可縮小腸損傷並促進黏膜損傷後再生
- 口服TGF-β2可以預防黏膜損傷,增強p-ERK和b-catenin,進而增加的腸細胞增殖,減少腸細胞凋亡
- 過敏體質的母親體內及母乳中TGF-β2濃度較低,TGF-β2濃度降低會干擾嬰兒黏膜免疫系統的發展
- 天然存在的TGF-β2可以用於嬰幼兒的功能性食物或作為特定腸道的治療:活性TGF-β2飲食是有效的緩解Crohn’s disease patients、TGF-β2對細胞生長的影響最為人所知,在組織受傷或疾病期間, TGF-β2與血小板衍生因子共同刺激細胞增殖和細胞外基質產生,從而癒合或修復受傷的組織 、TGF-β2可以自分泌和旁分泌的方式起作用 、TGF-β2 控制淋巴細胞、巨噬細胞和樹突狀細胞的分化、增殖和活化狀態,達到預防自身免疫和抗發炎
- 體外研究表示,TGF-β2抑制巨噬細胞和神經膠質瘤細胞MHC class II抗原,並調節MHC class I表現 :TGF-β2通過抑制MHC class II transactivator,進而抑制IFN- γ轉錄 、腸屏障是防止腸道毒素和細菌進入體內, TGF-β2可保持其完整性
- 人體臨床實驗證實 :七名兒童患有活動性小腸克羅恩病 (active small bowel Crohn’s disease) 給與富含TGF-β2的飲食8週,結果顯示 :所有病患疾病皆獲得改善,C反應蛋白質恢復正常,提高血清白蛋白和良好的體重增加 、迴腸評估結果:六個孩童黏膜炎降低,且其中兩個幼童完全康
- 新生兒糞便中分析TGF-β濃度,發現出生一年後,體內TGF-β降低5倍
- 母乳中TGF-β的存在,賦予嬰幼兒在早期過敏保護作用,可協助IgA發揮作用並誘導Treg細胞活化。
- TGF-β減少游離抗原進入體內
TGF-β2降低 流感嚴重度及縮短病程
A型流感病毒H1N1是人類最常感染的流感病毒,感染後可能出現發燒、咳嗽、流鼻水、打噴嚏、肌肉酸痛、頭痛或極度倦怠感等症狀
TGF-β2降低流行性感冒病毒嚴重度及縮短病程[41]
- 肺部上皮細胞是流感病毒首要攻擊目標
- 病毒使呼吸道反覆發炎,造成正常免疫力下降,延長感冒病程
- TGF-β2是重要的抗發炎者
- 調節發炎分子
- 抑制TH1細胞產生發炎物質
- 保護肺部組織,避免遭受流感病毒誘發發炎
許多研究證實,魚油及益生菌具有調整過敏體質的作用,研究也發現,兩者好處的機轉是透過TGF-β2達到增進免疫力,改善過敏體質
TGF-β2治療乾癬的臨床實證
體外研究發現TGF-β2能抑制Th1相關細胞激素(IFN-γ及IL-2),顯示TGF-β2可能改善Th1相關疾病,例如乾癬。[44]
2005年一篇人體臨床試驗顯示TGF-β2具改善牛皮癬嚴重度的潛力[45]
2007年更發表了一篇隨機雙盲研究,探討TGF-β2改善乾癬的效力及安全度,該研究收案42名輕至中度的乾癬患者,隨機雙盲實驗112天。效力評估主要從觀察醫師整體評估(physician's global assessment, PGA) 、乾癬面積暨嚴重度指數(Psoriasis Area Severity Index ,PASI)、乾癬體表面積(BSA)、癢的嚴重度來判別。研究結果顯示,可明顯改善乾癬症狀及生活品質。安全度性顯示,高單位TGF-β2對肝、腎、血液指數無明顯變化且不具有細胞毒性,不會增加感染率,證實其安全性。
2008年提出不同的劑量觀點,一篇隨機雙盲性研究,TGF-β2連續服用56天,觀察皮膚學生活品質量表(Dermatology Life Quality Index,DLQI)、醫師整體評估(PGA)、癢的嚴重度,結果發現各指數均有明顯的改變(p<0.05)。連續每天服用TGF-β2共56天,能改善輕-中度乾癬患者的生活品質及降低疾病嚴度程度。機轉為TGF-β2抑制IL-2及調整Treg細胞,而改善乾癬的狀況[46]
TGF-β2改善自體免疫相關疾病
研究指出TGF-β2亦能控制免疫細胞增生、分化與活化,當TGF-β2功能降低或喪失,會使免疫系統對自體組織的排斥,而導致自體免疫疾病,同時TGF-β2又具有誘導發炎細胞聚集的功能,故乾癬、乾燥症、紅斑性狼瘡、全身性硬化症、多發性硬化症、類風濕性關節炎等,皆和TGF-β2的功能異常有關[44]。[45][46][47][48][49][50]
TGF-β2改善乾燥症
乾燥症患者細胞因子失衡的特徵:
在於促發炎細胞因子如IFN-γ,IL-12和IL-18的過度表達
重要的抗發炎細胞因子TGF-β太少,導致失去自身免疫的保護作用
維持眼部健康:
必須阻止『促發炎的淋巴細胞(Th1和Th17類型)滲入眼中以引發促發炎細胞因子』
許多研究皆指出,Treg和TGFβ2具免疫調節功能
體內擁有足量抗發炎的淋巴細胞(Treg)和TGFβ-2,可避免免疫相關疾病(如乾燥症)和發炎等紊亂的問題
補足體內抗發炎因子-TGF-β,有助於改善乾燥症
TGF-β2改善腎臟纖維化[51]
腎小管和腎間質的纖維化,最終導致不可逆的腎功能衰退,進入末期腎病(ESRD)。
目前認為結締組織生長因子(connective tissue growth factor,CTGF)是導致腎臟纖維化的主因,而TGF-β2可以活化sphingosine kinases-1 (SK-1),進而抑制CTGF表現,降低腎臟組織纖維化,延緩腎病變的進程
1. TGF-β2 大量表現在中樞神經系統,包括紋狀體(striatum)、神經元和黑質(substantia nigra;SN) 的星狀膠質細胞
2. 細胞及動物模式中,TGF-β2對神經細胞的生長,發育和分化具有直接影響力
3. 保護多巴胺神經元、提升存活率
4. 維持黑質紋狀體多巴胺系統(Nigrostriatal pathway),穩定腦內多巴胺濃度
5. 協助GDNF的神經保護作用 ,阻止腦內神經細胞凋亡或進行修復
6. 防止毒性導致神經傷害
7. TGF- β 2基因變異時,容易導向巴金森氏症發生
8. 額外補充TGF- β 2可通過血腦障壁,快速抵達腦部作用[57]
癌症
越來越多證據顯示,癌症歸因於身體慢性發炎,體內長期慢性發炎,會刺激癌細胞生長,戒除引起發炎的根源,是減少癌症發生的好方法[58]
TGF-β2可降低體內發炎反應,並可快速修復黏膜組織,減少正常細胞病變風險。[59]
在正常的細胞,TGF-β會藉由訊息傳遞將細胞周期停止在G1期以停止細胞的增殖、分化或是增進細胞凋亡的程序。補充TGF-β2可減少正常細胞病變,減少癌症的發生,但若體內已經有腫瘤存在,則需要更多臨床研究驗證相關機轉。-[60]
心臟疾病
動物研究表明,膽固醇會抑制心血管細胞對TGF-β的回應進而造成TGF-β保護心血管細胞的能力下降,最後導致動脈粥狀硬化以及其他心臟疾病的發生。 利用Statins(HMG-CoA還原抑制劑)這種藥物會降低膽固醇濃度,其作用機制可能是藉由提升心血管細胞對TGF-β的回應並恢復TGF-β對心血管細胞的保護能力[61]。
Marfan 症候群
TGF-β這類的訊號傳遞在Marfan症候群中扮演主要的發病因子[62],此種疾病的特徵有以下幾種:
- 具有不成比例的身高
- 患者常有蜘蛛趾(arachnodactyly),指節長度比平均值更高出許多
- 眼睛中的晶狀體異位(ectopia lentis)
- 心臟方面的併發症如二尖瓣脫垂(mitral valve prolapse)、主動脈擴張(aortic enlargement)導致主動脈夾層(aortic dissection)產生的可能性
而這些併發症背後發病原理是因為患者無法合成第一型原纖維蛋白(fibrillin I),也就是彈性纖維(elastic fibers)的主成分。導致結締組織的病變。在對小鼠的實驗中,若對 Marfan患者施打TGF-β的拮抗劑會減緩上述症狀的產生[63],其機制為減少原纖維蛋白(fibrillin)對 TGF-β的吸附能力。[64]
參看
外部連結
- Description of the TGF beta producing genes at ncbi.nlm.nih.gov
- Diagram of the TGF beta signaling pathway at genome.ad.jp
- The TGF-beta system — Nature Reviews Molecular Cell Biology
- SMART:TGFB domain annotation — European Molecular Biology Laboratory Heidelberg
- 醫學主題詞表(MeSH):TGF-beta
- Biochemists Solve Structure Of TGF-Beta And Its Receptor. 2008 Shows TGF-β3 dimer in TGFB-receptor.
- Measurement of Human Latent TGF-β1[永久失效連結]
- TGF beta pathway diagram
參考文獻
- ^ Oddy, Wendy H.; Rosales, Francisco. A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology. 2010-2, 21 (1 Pt 1): 47–59. ISSN 1399-3038. PMID 19594862. doi:10.1111/j.1399-3038.2009.00913.x.
- ^ van Neerven, R. J. Joost; Knol, Edward F.; Heck, Jeroen M. L.; Savelkoul, Huub F. J. Which factors in raw cow's milk contribute to protection against allergies?. The Journal of Allergy and Clinical Immunology. 2012-10, 130 (4): 853–858. ISSN 1097-6825. PMID 22939757. doi:10.1016/j.jaci.2012.06.050.
- ^ Massagué, J. Receptors for the TGF-beta family. Cell. 1992-06-26, 69 (7): 1067–1070. ISSN 0092-8674. PMID 1319842.
- ^ Heldin, C. H.; Miyazono, K.; ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997-12-04, 390 (6659): 465–471. ISSN 0028-0836. PMID 9393997. doi:10.1038/37284.
- ^ Perlman, R.; Schiemann, W. P.; Brooks, M. W.; Lodish, H. F.; Weinberg, R. A. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biology. 2001-8, 3 (8): 708–714. ISSN 1465-7392. PMID 11483955. doi:10.1038/35087019.
- ^ Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. January 2000, 100 (1): 57–70. PMID 10647931. doi:10.1016/S0092-8674(00)81683-9.
- ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Chen, Jiunn-Horng; Huang, Po-Han; Lee, Chen-Chen; Chen, Pin-Yu; Chen, Hui-Chen. A bovine whey protein extract can induce the generation of regulatory T cells and shows potential to alleviate asthma symptoms in a murine asthma model. The British Journal of Nutrition. 2013-05-28, 109 (10): 1813–1820. ISSN 1475-2662. PMID 23068908. doi:10.1017/S0007114512003947.
- ^ 8.0 8.1 al., Harrop CA , et. TGF-β₂ decreases baseline and IL-13-stimulated mucin production by primary human bronchial epithelial cells. - PubMed - NCBI. www.ncbi.nlm.nih.gov. [2017-07-27].
- ^ Jiang, Jingjing; George, Steven C. TGF-β2 reduces nitric oxide synthase mRNA through a ROCK-dependent pathway in airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology. September 2011, 301 (3): L361–367. ISSN 1522-1504. PMC 3174748 . PMID 21685242. doi:10.1152/ajplung.00464.2010.
- ^ Krauss-Etschmann, Susanne; Hartl, Dominik; Rzehak, Peter; Heinrich, Joachim; Shadid, Rania; Del Carmen Ramírez-Tortosa, María; Campoy, Cristina; Pardillo, Susana; Schendel, Dolores J. Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women. The Journal of Allergy and Clinical Immunology. 2008-2, 121 (2): 464–470.e6. ISSN 1097-6825. PMID 17980419. doi:10.1016/j.jaci.2007.09.018.
- ^ Rautava, Samuli; Isolauri, Erika. Cow's milk allergy in infants with atopic eczema is associated with aberrant production of interleukin-4 during oral cow's milk challenge. Journal of Pediatric Gastroenterology and Nutrition. 2004-11, 39 (5): 529–535. ISSN 0277-2116. PMID 15572894.
- ^ Hon, Kam-Lun Ellis; Ching, Gary Ka-Wai; Wong, Kin-Yee; Leung, Ting-Fan; Leung, Alexander K. C. A pilot study to explore the usefulness of antibody array in childhood atopic dermatitis. Journal of the National Medical Association. 2008-5, 100 (5): 500–504. ISSN 0027-9684. PMID 18507202.
- ^ Kalliomäki, M.; Ouwehand, A.; Arvilommi, H.; Kero, P.; Isolauri, E. Transforming growth factor-beta in breast milk: a potential regulator of atopic disease at an early age. The Journal of Allergy and Clinical Immunology. 1999-12, 104 (6): 1251–1257. ISSN 0091-6749. PMID 10589009.
- ^ Rautava, Samuli; Kalliomäki, Marko; Isolauri, Erika. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. The Journal of Allergy and Clinical Immunology. 2002-1, 109 (1): 119–121. ISSN 0091-6749. PMID 11799376.
- ^ Oddy, Wendy H.; Rosales, Francisco. A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology. 2010-2, 21 (1 Pt 1): 47–59. ISSN 1399-3038. PMID 19594862. doi:10.1111/j.1399-3038.2009.00913.x.
- ^ Rautava, Samuli; Kalliomäki, Marko; Isolauri, Erika. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. The Journal of Allergy and Clinical Immunology. 2002-1, 109 (1): 119–121. ISSN 0091-6749. PMID 11799376.
- ^ Han, Sang-Chul; Koo, Dong-Hwan; Kang, Na-Jin; Yoon, Weon-Jong; Kang, Gyeoung-Jin; Kang, Hee-Kyoung; Yoo, Eun-Sook. Docosahexaenoic Acid Alleviates Atopic Dermatitis by Generating Tregs and IL-10/TGF-β-Modified Macrophages via a TGF-β-Dependent Mechanism. The Journal of Investigative Dermatology. 2015-6, 135 (6): 1556–1564. ISSN 1523-1747. PMID 25405323. doi:10.1038/jid.2014.488.
- ^ Laiho, Kirsi; Lampi, Anna-Maija; Hamalainen, Mari; Moilanen, Eeva; Piironen, Vieno; Arvola, Taina; Syrjanen, Stina; Isolauri, Erika. Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatric Research. 2003-4, 53 (4): 642–647. ISSN 0031-3998. PMID 12612204. doi:10.1203/01.PDR.0000055778.58807.C8.
- ^ Flohr, Carsten; Johansson, S. G. O; Wahlgren, Carl-Fredrik; Williams, Hywel. How atopic is atopic dermatitis?. Journal of Allergy and Clinical Immunology. 2004-07-01, 114 (1): 150–158. doi:10.1016/j.jaci.2004.04.027.
- ^ Rautava, Samuli; Isolauri, Erika. Cow's milk allergy in infants with atopic eczema is associated with aberrant production of interleukin-4 during oral cow's milk challenge. Journal of Pediatric Gastroenterology and Nutrition. November 2004, 39 (5): 529–535. ISSN 0277-2116. PMID 15572894.
- ^ Kalliomäki, M.; Ouwehand, A.; Arvilommi, H.; Kero, P.; Isolauri, E. Transforming growth factor-beta in breast milk: a potential regulator of atopic disease at an early age. The Journal of Allergy and Clinical Immunology. December 1999, 104 (6): 1251–1257. ISSN 0091-6749. PMID 10589009.
- ^ Sistek, D.; Kelly, R.; Wickens, K.; Stanley, T.; Fitzharris, P.; Crane, J. Is the effect of probiotics on atopic dermatitis confined to food sensitized children?. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology. May 2006, 36 (5): 629–633. ISSN 0954-7894. PMID 16650048. doi:10.1111/j.1365-2222.2006.02485.x.
- ^ Oddy, Wendy H.; Rosales, Francisco. A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology. February 2010, 21 (1 Pt 1): 47–59. ISSN 1399-3038. PMID 19594862. doi:10.1111/j.1399-3038.2009.00913.x.
- ^ Rautava, Samuli; Lu, Lei; Nanthakumar, N. Nanda; Dubert-Ferrandon, Alix; Walker, W. Allan. TGF-β2 induces maturation of immature human intestinal epithelial cells and inhibits inflammatory cytokine responses induced via the NF-κB pathway. Journal of Pediatric Gastroenterology and Nutrition. May 2012, 54 (5): 630–638. ISSN 1536-4801. PMC 3319014 . PMID 22067113. doi:10.1097/MPG.0b013e31823e7c29.
- ^ Rautava, Samuli; Kalliomäki, Marko; Isolauri, Erika. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. The Journal of Allergy and Clinical Immunology. January 2002, 109 (1): 119–121. ISSN 0091-6749. PMID 11799376.
- ^ Laiho, Kirsi; Lampi, Anna-Maija; Hamalainen, Mari; Moilanen, Eeva; Piironen, Vieno; Arvola, Taina; Syrjanen, Stina; Isolauri, Erika. Breast milk fatty acids, eicosanoids, and cytokines in mothers with and without allergic disease. Pediatric Research. April 2003, 53 (4): 642–647. ISSN 0031-3998. PMID 12612204. doi:10.1203/01.PDR.0000055778.58807.C8.
- ^ Namachivayam, Kopperuncholan; MohanKumar, Krishnan; Arbach, Dima; Jagadeeswaran, Ramasamy; Jain, Sunil K.; Natarajan, Viswanathan; Mehta, Dolly; Jankov, Robert P.; Maheshwari, Akhil. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PloS One. 2015, 10 (7): e0134003. ISSN 1932-6203. PMC 4520553 . PMID 26225425. doi:10.1371/journal.pone.0134003.
- ^ Namachivayam, Kopperuncholan; Coffing, Hayley P.; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L.; Blanco, Cynthia L.; Patel, Aloka L.; Meier, Paula P. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2015-08-01, 309 (3): G171–180. ISSN 1522-1547. PMC 4525106 . PMID 26045614. doi:10.1152/ajpgi.00126.2015.
- ^ Nguyen, Duc Ninh; Jiang, Pingping; Jacobsen, Susanne; Sangild, Per T.; Bendixen, Emøke; Chatterton, Dereck E. W. Protective effects of transforming growth factor β2 in intestinal epithelial cells by regulation of proteins associated with stress and endotoxin responses. PloS One. 2015, 10 (2): e0117608. ISSN 1932-6203. PMC 4323210 . PMID 25668313. doi:10.1371/journal.pone.0117608.
- ^ Nguyen, Duc Ninh; Sangild, Per T.; Ostergaard, Mette V.; Bering, Stine B.; Chatterton, Dereck E. W. Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2014-10-01, 307 (7): G689–699. ISSN 1522-1547. PMID 25147235. doi:10.1152/ajpgi.00193.2014.
- ^ Namachivayam, Kopperuncholan; Blanco, Cynthia L.; MohanKumar, Krishnan; Jagadeeswaran, Ramasamy; Vasquez, Margarita; McGill-Vargas, Lisa; Garzon, Steven A.; Jain, Sunil K.; Gill, Ravinder K. Smad7 inhibits autocrine expression of TGF-β2 in intestinal epithelial cells in baboon necrotizing enterocolitis. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2013-01-15, 304 (2): G167–180. ISSN 1522-1547. PMC 3543645 . PMID 23154975. doi:10.1152/ajpgi.00141.2012.
- ^ Maheshwari, Akhil; Kelly, David R.; Nicola, Teodora; Ambalavanan, Namasivayam; Jain, Sunil K.; Murphy-Ullrich, Joanne; Athar, Mohammad; Shimamura, Masako; Bhandari, Vineet. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology. January 2011, 140 (1): 242–253. ISSN 1528-0012. PMC 3008335 . PMID 20875417. doi:10.1053/j.gastro.2010.09.043.
- ^ Rautava, Samuli; Nanthakumar, N. Nanda; Dubert-Ferrandon, Alix; Lu, Lei; Rautava, Jaana; Walker, W. Allan. Breast milk-transforming growth factor-β₂ specifically attenuates IL-1β-induced inflammatory responses in the immature human intestine via an SMAD6- and ERK-dependent mechanism. Neonatology. 2011, 99 (3): 192–201. ISSN 1661-7819. PMC 3214931 . PMID 20881435. doi:10.1159/000314109.
- ^ Penttila, I. A.; Flesch, I. E. A.; McCue, A. L.; Powell, B. C.; Zhou, F. H.; Read, L. C.; Zola, H. Maternal milk regulation of cell infiltration and interleukin 18 in the intestine of suckling rat pups. Gut. November 2003, 52 (11): 1579–1586. ISSN 0017-5749. PMC 1773864 . PMID 14570726.
- ^ Dünker, Nicole; Schmitt, Kai; Schuster, Norbert; Krieglstein, Kerstin. The role of transforming growth factor beta-2, beta-3 in mediating apoptosis in the murine intestinal mucosa. Gastroenterology. May 2002, 122 (5): 1364–1375. ISSN 0016-5085. PMID 11984523.
- ^ Donnet-Hughes, A.; Schiffrin, E. J.; Huggett, A. C. Expression of MHC antigens by intestinal epithelial cells. Effect of transforming growth factor-beta 2 (TGF-beta 2). Clinical and Experimental Immunology. February 1995, 99 (2): 240–244. ISSN 0009-9104. PMC 1534309 . PMID 7851018.
- ^ Beattie, R. M.; Schiffrin, E. J.; Donnet-Hughes, A.; Huggett, A. C.; Domizio, P.; MacDonald, T. T.; Walker-Smith, J. A. Polymeric nutrition as the primary therapy in children with small bowel Crohn's disease. Alimentary Pharmacology & Therapeutics. December 1994, 8 (6): 609–615. ISSN 0269-2813. PMID 7696450.
- ^ Donnet-Hughes, A.; Duc, N.; Serrant, P.; Vidal, K.; Schiffrin, E. J. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunology and Cell Biology. February 2000, 78 (1): 74–79. ISSN 0818-9641. PMID 10651932. doi:10.1046/j.1440-1711.2000.00882.x.
- ^ Maheshwari, Akhil; Kelly, David R.; Nicola, Teodora; Ambalavanan, Namasivayam; Jain, Sunil K.; Murphy-Ullrich, Joanne; Athar, Mohammad; Shimamura, Masako; Bhandari, Vineet. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology. January 2011, 140 (1): 242–253. ISSN 1528-0012. PMC 3008335 . PMID 20875417. doi:10.1053/j.gastro.2010.09.043.
- ^ Jiang, Jingjing; George, Steven C. TGF-β2 reduces nitric oxide synthase mRNA through a ROCK-dependent pathway in airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology. September 2011, 301 (3): L361–367. ISSN 1522-1504. PMC 3174748 . PMID 21685242. doi:10.1152/ajplung.00464.2010.
- ^ Lam, W. Y.; Yeung, Apple C. M.; Chu, Ida M. T.; Chan, Paul K. S. Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses. Virology Journal. 2010-11-26, 7: 344. ISSN 1743-422X. PMC 3002310 . PMID 21108843. doi:10.1186/1743-422X-7-344.
- ^ Rautava, Samuli; Kalliomäki, Marko; Isolauri, Erika. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. The Journal of Allergy and Clinical Immunology. January 2002, 109 (1): 119–121. ISSN 0091-6749. PMID 11799376.
- ^ Han, Sang-Chul; Koo, Dong-Hwan; Kang, Na-Jin; Yoon, Weon-Jong; Kang, Gyeoung-Jin; Kang, Hee-Kyoung; Yoo, Eun-Sook. Docosahexaenoic Acid Alleviates Atopic Dermatitis by Generating Tregs and IL-10/TGF-β-Modified Macrophages via a TGF-β-Dependent Mechanism. The Journal of Investigative Dermatology. June 2015, 135 (6): 1556–1564. ISSN 1523-1747. PMID 25405323. doi:10.1038/jid.2014.488.
- ^ 44.0 44.1 Drouin, Réjean; Lamiot, Eric; Cantin, Kim; Gauthier, Sylvie F.; Pouliot, Yves; Poubelle, Patrice E.; Juneau, Christina. XP-828L (Dermylex), a new whey protein extract with potential benefit for mild to moderate psoriasis. Canadian Journal of Physiology and Pharmacology. September 2007, 85 (9): 943–951. ISSN 0008-4212. PMID 18066141. doi:10.1139/Y07-084.
- ^ 45.0 45.1 Poulin, Y.; Pouliot, Y.; Lamiot, E.; Aattouri, N.; Gauthier, S. F. Safety and efficacy of a milk-derived extract in the treatment of plaque psoriasis: an open-label study. Journal of Cutaneous Medicine and Surgery. December 2005, 9 (6): 271–275. ISSN 1203-4754. PMID 16699908. doi:10.1177/120347540500900601.
- ^ 46.0 46.1 Drouin, Rejean; Moroni, Olivier; Cantin, Kim; Juneau, Christina. A double-blind, placebo-controlled, randomized trial of XP-828L (800 mg) on the quality of life and clinical symptoms of patients with mild-to-moderate psoriasis. Alternative Medicine Review: A Journal of Clinical Therapeutic. June 2008, 13 (2): 145–152. ISSN 1089-5159. PMID 18590350.
- ^ Kosiewicz, Michele M.; Alard, Pascale. Tolerogenic antigen-presenting cells: regulation of the immune response by TGF-beta-treated antigen-presenting cells. Immunologic Research. 2004, 30 (2): 155–170. ISSN 0257-277X. PMID 15477657. doi:10.1385/IR:30:2:155.
- ^ Stern, Michael E.; Schaumburg, Chris S.; Pflugfelder, Stephen C. Dry eye as a mucosal autoimmune disease. International Reviews of Immunology. February 2013, 32 (1): 19–41. ISSN 1563-5244. PMC 3587314 . PMID 23360156. doi:10.3109/08830185.2012.748052.
- ^ Shirvani-Farsani, Zeinab; Behmanesh, Mehrdad; Mohammadi, Seyed Mahdi; Naser Moghadasi, Abdorreza. Vitamin D levels in multiple sclerosis patients: Association with TGF-β2, TGF-βRI, and TGF-βRII expression. Life Sciences. 2015-08-01, 134: 63–67. ISSN 1879-0631. PMID 26037400. doi:10.1016/j.lfs.2015.05.017.
- ^ Azar, S. T.; Major, S. C.; Safieh-Garabedian, B. Altered plasma levels of nerve growth factor and transforming growth factor-beta2 in type-1 diabetes mellitus. Brain, Behavior, and Immunity. December 1999, 13 (4): 361–366. ISSN 0889-1591. PMID 10600222. doi:10.1006/brbi.1999.0554.
- ^ Ren, Shuyu; Babelova, Andrea; Moreth, Kristin; Xin, Cuiyan; Eberhardt, Wolfgang; Doller, Anke; Pavenstädt, Hermann; Schaefer, Liliana; Pfeilschifter, Josef. Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression. Kidney International. October 2009, 76 (8): 857–867. ISSN 1523-1755. PMID 19657322. doi:10.1038/ki.2009.297.
- ^ Schober, Andreas; Peterziel, Heike; von Bartheld, Christopher S.; Simon, Horst; Krieglstein, Kerstin; Unsicker, Klaus. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiology of Disease. February 2007, 25 (2): 378–391. ISSN 0969-9961. PMID 17141511. doi:10.1016/j.nbd.2006.10.005.
- ^ Goris, A.; Williams-Gray, C. H.; Foltynie, T.; Brown, J.; Maranian, M.; Walton, A.; Compston, D. a. S.; Barker, R. A.; Sawcer, S. J. Investigation of TGFB2 as a candidate gene in multiple sclerosis and Parkinson's disease. Journal of Neurology. July 2007, 254 (7): 846–848. ISSN 0340-5354. PMID 17431704. doi:10.1007/s00415-006-0414-6.
- ^ Andrews, Zane B.; Zhao, Hua; Frugier, Tony; Meguro, Reiko; Grattan, David R.; Koishi, Kyoko; McLennan, Ian S. Transforming growth factor beta2 haploinsufficient mice develop age-related nigrostriatal dopamine deficits. Neurobiology of Disease. March 2006, 21 (3): 568–575. ISSN 0969-9961. PMID 16257223. doi:10.1016/j.nbd.2005.09.001.
- ^ Roussa, Eleni; Wiehle, Michael; Dünker, Nicole; Becker-Katins, Steffen; Oehlke, Oliver; Krieglstein, Kerstin. Transforming growth factor beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells (Dayton, Ohio). September 2006, 24 (9): 2120–2129. ISSN 1066-5099. PMID 16741229. doi:10.1634/stemcells.2005-0514.
- ^ pubmeddev. the effects of transforming growth factor beta 2 on dopaminergic graft - PubMed - NCBI. www.ncbi.nlm.nih.gov. [2017-09-11].
- ^ McLennan, Ian S; Weible, Michael; Hendry, Ian; Koishi, Kyoko. Transport of transforming growth factor-B2 across the blood-brain barrier. 2015-12-13.
- ^ TIME Magazine Cover: Inflammation: The Secret Killer - Feb. 23, 2004. TIME.com. [2017-08-03].
- ^ Maheshwari, Akhil; Kelly, David R.; Nicola, Teodora; Ambalavanan, Namasivayam; Jain, Sunil K.; Murphy-Ullrich, Joanne; Athar, Mohammad; Shimamura, Masako; Bhandari, Vineet. TGF-β2 Suppresses Macrophage Cytokine Production and Mucosal Inflammatory Responses in the Developing Intestine. Gastroenterology. 2011-1, 140 (1): 242–253. ISSN 0016-5085. PMC 3008335 . PMID 20875417. doi:10.1053/j.gastro.2010.09.043.
- ^ Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N. Engl. J. Med. May 2000, 342 (18): 1350–8. PMID 10793168. doi:10.1056/NEJM200005043421807.
- ^ Understanding Heart Disease: Research Explains Link Between Cholesterol and Heart Disease 網際網路檔案館的存檔,存檔日期2007-11-12.
- ^ Entrez Gene. TGFBR2 transforming growth factor, beta receptor II (Entrez gene entry). 2007 [January 11, 2007].
- ^ Habashi JP, Judge DP, Holm TM; et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. April 2006, 312 (5770): 117–21. PMC 1482474 . PMID 16601194. doi:10.1126/science.1124287.
- ^ Robinson PN, Arteaga-Solis E, Baldock C; et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. October 2006, 43 (10): 769–87. PMC 2563177 . PMID 16571647. doi:10.1136/jmg.2005.039669.