跳至內容

普呂克坐標

維基百科,自由的百科全書

這是本頁的一個歷史版本,由劉慶軒留言 | 貢獻2018年7月16日 (一) 03:25 (這是一篇小作品)編輯。這可能和當前版本存在着巨大的差異。

數學上,普呂克坐標是將射影三維空間中的每條線給予6個齊次坐標,也就是一個射影5維空間中的一點。普呂克坐標由尤利烏斯·普呂克於1844年給出。

定義

令L為一直線,穿過點和點

定義的行列式。

這蘊涵着.

考慮六元組。不是所有6個都可以同時為0,因為如果是的話,所有子矩陣都是零,則該矩陣最多秩為1,這個p及q為不同點的假設不符。

p和q的選取對於6元組的影響只是一個非零因子,如下所示:

考慮為L上不同點,其中。 p'和q'不同的假設歸結為。 可以檢驗: 這樣,

稱W為所有PG(3,K)中的直線的集合。我們現在恰當地定義一個映射:從W到一個K上的5維攝影空間:

到克萊因二次曲面的單射性和滿射性