跳至內容

描述函數

維基百科,自由的百科全書

這是本頁的一個歷史版本,由Wolfch對話 | 貢獻2019年5月3日 (五) 13:16 原理編輯。這可能和目前版本存在着巨大的差異。

描述函數(describing function)也稱為諧波平衡法,是控制系統中的方法,由Nikolay Mitrofanovich Krylov英語Nikolay Mitrofanovich Krylov尼古拉·博戈柳博夫在1930年代提出[1][2],後來由Ralph Kochenburger延伸[3],是用近似方式來分析非線性控制問題的作法。描述函數是以準線性為基礎,是用會依輸入波形振幅而變化的線性時不變傳遞函數來近似非線性系統的作法。依照定義,真正線性時不變系統的傳遞函數不會隨輸入函數的振幅而變化(因為是線性系統)。因此,其和振幅的相依性就會產生一群的線性系統,這些系統結合起來的目的是為了近似非線性系統的特性。描述函數是少數廣為應用來設計非線性系統的方法,描述函數是在分析閉迴路控制器(例如工業過程控制、伺服機構、電子振盪器)的極限環時,常見的數學工具。

原理

考慮一個慢速,穩定的線性系統,其回授路徑中有不連續(但有分段連續)的非線性特性(例如有飽和的放大器、或是有死區效應的元件)。在非線性元件上看到的連續區域會視線性系統的振幅而定。若線性系統輸出的振幅變小,其非線性元件的特性可能又會變換到另一個區域。這種在二個連續區間之間的切換會造成週期性的振盪。描述函數方式法目的是要預設這些振盪的特性(也就是其基頻),作法是假設慢速系統特性類似低通濾波器帶通濾波器,會將能量集中在單一頻率。即使輸出波形有多個不同的模態,描述函數仍可以提供有關頻率的資訊,也許也包括振幅相關的資訊。此情形下,描述函數有點類似在描述回授系統的滑動模式

在諧波平衡下的非線性系統

利用低通濾波器的假設,系統響應可以表示為一組正弦曲線中的一個弦波。此情形下,系統可以表示為弦波描述函數(SIDF),是對振幅為A,頻率為的弦波輸入的系統響應。SIDF是描述線性函數傳遞函數 的變體。在準線性系統中,輸入信號為弦波時,其輸出也是相同頻率的弦波,但其振幅及相位的關係可以用表示。以此觀點來看,許多系統在弦波輸入下的響應雖不一定是純弦波,但大部份輸出能量集中在是和輸入信號相同的頻率,因此可以近似為準線性系統。其原因是這類系統在其本質上有低通或是帶通的特性,因此高次的諧波受到了抑制,也有可能是特意加入了濾波器英語filter (signal processing)。弦波描述函數(SIDF)的重要用途之一是消除弦波電子振盪器的不理想訊號。

考慮非線性系統,在弦波輸入下,其描述函數可以表示為,其中的實部g及虛部b可以表示如下:

也有其他型式的描述函數,例如水平輸入以及高斯雜訊輸入的描述函數。描述函數無法完整的描述系統,不過多半已可以處理像是控制或是穩定性的問題。描述函數最適用於分析非線性程度相對輕微的系統。此外,高階弦波輸入描述函數(HOSIDF)描述非線性系統在弦波輸入下,其各階諧波成份的振幅及相位。高階弦波輸入描述函數是描述函數是延伸版本,用在響應的非線性程度非常明顯的場合。

注意事項

已隱藏部分未翻譯內容,歡迎參與翻譯

Although the describing function method can produce reasonably accurate results for a wide class of systems, it can fail badly for others. For example, the method can fail if the system emphasizes higher harmonics of the nonlinearity. Such examples have been presented by Tzypkin for 起停式控制 systems.[4] A fairly similar example is a closed-loop oscillator consisting of a non-inverting 施密特觸發器 followed by an inverting 積分器 that feeds back its output to the Schmitt trigger's input. The output of the Schmitt trigger is going to be a 方波form, while that of the integrator (following it) is going to have a 三角波form with peaks coinciding with the transitions in the square wave. Each of these two oscillator stages lags the signal exactly by 90 degrees (relative to its input). If one were to perform DF analysis on this circuit, the triangle wave at the Schmitt trigger's input would be replaced by its fundamental (sine wave), which passing through the trigger would cause a phase shift of less than 90 degrees (because the sine wave would trigger it sooner than the triangle wave does) so the system would appear not to oscillate in the same (simple) way.[5]

Also, in the case where the conditions for 阿依熱爾曼猜想 or 卡爾曼猜想 are fulfilled, there are no periodic solutions by describing function method,[6][7] but counterexamples with periodic solutions (隱藏振盪) are well known. Therefore, the application of the describing function method requires additional justification.[8][9]

參考資料

  1. ^ Krylov, N. M.; N. Bogoliubov. Introduction to Nonlinear Mechanics. Princeton, US: Princeton Univ. Press. 1943. ISBN 0691079854. 
  2. ^ Blaquiere, Austin. Nonlinear System Analysis. Elsevier Science. : 177. ISBN 0323151663. 
  3. ^ Kochenburger, Ralph J. A Frequency Response Method for Analyzing and Synthesizing Contactor Servomechanisms. Trans. AIEE (American Institute of Electrical Engineers). January 1950, 69 (1): 270–284 [June 18, 2013]. doi:10.1109/t-aiee.1950.5060149. 
  4. ^ Tsypkin, Yakov Z. Relay Control Systems. Cambridge: Univ Press. 1984. 
  5. ^ Boris Lurie; Paul Enright. Classical Feedback Control: With MATLAB. CRC Press. 2000: 298–299. ISBN 978-0-8247-0370-7. 
  6. ^ Leonov G.A.; Kuznetsov N.V. Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems (PDF). Doklady Mathematics. 2011, 84 (1): 475–481. doi:10.1134/S1064562411040120. ,
  7. ^ Aizerman's and Kalman's conjectures and describing function method (PDF). 
  8. ^ Bragin V.O.; Vagaitsev V.I.; Kuznetsov N.V.; Leonov G.A. Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits (PDF). Journal of Computer and Systems Sciences International. 2011, 50 (4): 511–543. doi:10.1134/S106423071104006X. 
  9. ^ Leonov G.A.; Kuznetsov N.V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos. 2013, 23 (1): art. no. 1330002. doi:10.1142/S0218127413300024. 

延伸閱讀

  • N. Krylov and N. Bogolyubov: Introduction to Nonlinear Mechanics, Princeton University Press, 1947
  • A. Gelb and W. E. Vander Velde: Multiple-Input Describing Functions and Nonlinear System Design, McGraw Hill, 1968.
  • James K. Roberge, Operational Amplifiers: Theory and Practice, chapter 6: Non-Linear Systems, 1975; free copy courtesy of MIT OpenCourseWare 6.010 (2013); see also (1985) video recording of Roberge's lecture on describing functions
  • P.W.J.M. Nuij, O.H. Bosgra, M. Steinbuch, Higher Order Sinusoidal Input Describing Functions for the Analysis of Nonlinear Systems with Harmonic Responses, Mechanical Systems and Signal Processing, 20(8), 1883–1904, (2006)

外部連結