跳转到内容

上界和下界

维基百科,自由的百科全书

这是本页的一个历史版本,由Escarbot留言 | 贡献2019年5月14日 (二) 16:33 (wikidata interwiki)编辑。这可能和当前版本存在着巨大的差异。

為一個偏序集,若存在,能滿足都有,則稱作集合上界,若存在,能滿足都有,則稱作下界

例如在實變數中,若存在一個實數,能滿足都有,則即為集合上界,若存在一個實數,能滿足都有,則即為集合下界

性質

连续性公理:在非空实数集中,若含上界,則必含最小上界上确界);若含下界,則必存在最大下界下确界)。[1]

参见

  1. ^ 确界存在定理-学术百科-知网空间. wiki.cnki.com.cn. 知网空间. [2017-06-08].