跳至內容

梯形

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

這是本頁的一個歷史版本,由彭伯暘對話 | 貢獻2020年5月24日 (日) 13:58 top編輯。這可能和目前版本存在着巨大的差異。

梯形
梯形
類型四邊形
對偶平行四邊形
4
頂點4
面積
特性

梯形是只有一組對邊平行四邊形(如果兩對邊皆平行,則為長方形正方形)。梯形平行的兩條邊為底邊,分別稱為上底下底,其間的距離為,不平行的兩條邊為。下底與腰的夾角為底角,上底與腰的夾角為頂角

廣義中,至少有一組對邊平行即為梯形,因此平行四邊形是梯形;狹義中,有且僅有一組對邊平行者為梯形,因此平行四邊形並不是梯形。

中位線 (兩腰中點連線段)

由梯形兩腰的中點連成的線段稱為梯形的中位線。梯形的中位線與上底和下底都平行,長度為上底與下底的長度之和的一半。

為梯形的底邊, 為梯形的兩腰,其中 ,則梯形的高:

面積

梯形的面積 滿足:

其中, 是梯形的高, 分別為其上底和下底。事實上,由於中位線 因此梯形面積 亦滿足:

其中 為中位線的長度。

以上兩個公式均適用於任何梯形。

邊與角的關係

  • 上下底邊平行,因此上下鄰角互為補角,度數和為180度。
  • 對角線分割另一條對角線的比相同。

等腰梯形

兩腰長度相等的梯形稱為等腰梯形。它具有如下性質:

  1. 兩條對角線相等。
  2. 同一底上的二內角相等。
  3. 對角互補,四頂點共圓

依據以上性質,判定一個四邊形是等腰梯形可以通過以下命題:

  1. 兩腰相等的梯形是等腰梯形。
  2. 兩條對角線相等的梯形是等腰梯形。
  3. 同一底上的二內角相等的梯形是等腰梯形。

直角梯形

一個底角為90°的梯形是直角梯形。由於梯形的二底邊平行,因此根據同側內角關係,直角梯形一腰上的兩個底角都是90°。