跳转到内容

橢圓偏振技術

维基百科,自由的百科全书

这是本页的一个历史版本,由Pang-hung.liu留言 | 贡献2008年1月18日 (五) 17:07 基本原理编辑。这可能和当前版本存在着巨大的差异。

橢圓偏振技術是一種多功能和強大的光學技術,可用以取得薄膜的介電性質(複數折射率或介電常數)。它已被應用在許多不同的領域,從基礎研究到工業應用,如半導體物理研究、微電子學和生物學。橢圓偏振是一個很敏感的薄膜性質測量技術,且具有非破壞性和非接觸之優點。

分析自樣品反射之極化光的改變,橢圓偏振技術可得到膜厚比探測光本身波長更短的薄膜資訊,小至一個單原子層,甚至更小。橢圓儀可測得複數折射率或介電函數張量,可以此獲得基本的物理參數,並且這與各種樣品的性質,包括形態、晶體質量、化學成分或導電性,有所關聯。它常被用來鑑定單層或多層堆疊的薄膜厚度,可量測厚度由數埃(Angstrom)或數十奈米到幾微米皆有極佳的準確性。

之所以命名為橢圓偏振,是因為一般大部分的極化多是橢圓的。此技術已發展近百年,現在已有許多標準化的應用。然而,橢圓偏振技術對於在其他學科如生物學和醫學領域引起研究人員的興趣,並帶來新的挑戰。例如以此測量不穩定的液體表面和顯微成像。

基本原理

此技術係在測量光在反射穿透樣品時,其偏振性質的改變。通常,橢圓偏振多在反射模式下進行。偏振性質的改變主要是由樣品的性質來決定(厚度、複折射率或介電性質(Dielectric function))。雖然光學技術受制於先天繞射極限的限制,橢圓偏振卻可藉由相位資訊及光偏振之狀態的改變,來取得等級的解析度。在最簡單的形式,此技術可適用於厚度小於一奈米到數微米之薄膜。樣品必須是由少數幾個不連續而有明確介面、光學均勻且具等向性且非吸收光的膜層構成。逾越上述的假設,則會不符標準橢圓偏振之處理程序,因而將需要對此技術更進階的一些改變以符合其應用(見下詳述)。

實驗細節

實驗裝置

橢圓偏振實驗之裝置示意圖

光源(Light Source)所放射出之電磁波(Electromagnetic radiation)經過偏光鏡(Polarizer)後,極化線性偏振光,可選擇是否通過補償鏡片(Compensator,延相器四分之一波片),之後打在薄膜樣品上。電磁波被反射後同樣可選擇是否再通過補償鏡片,然後穿過第二片通常稱為分析鏡的偏光鏡,進入偵檢器。 有些橢圓儀不使用補償片,而在入射光束的路徑採用相位調變器。橢圓偏振是一種光學鏡面反射技術(入射角等於反射角),入射光與反射光路徑在同一平面上(稱為入射平面),而被偏振為與此平面平行及垂直的光,則分別稱之為p或s偏振光。