用户:JC1/twenty-second
输电系统是指由发电厂至次级本地负载中心之间的极高压大电能输送过程[1],由负载中心转换电压至中高压再输送至客户则为配电系统,两者相加则为输电网路,又称为电网。自电流战争起,电力系统由大量独立小型电力网络整合为一个大型的电力输送网络,而发电能力亦集中至远离民居的大型发电厂。输电系统着重于可靠且低损耗地将大量电力作远距离输送,亦需要为各电网、发电与供电之间的连接作平衡[2]:91。例如在大范围同步电力网络之中,为增加电力传送的效率同时降低发电与输电的成本,电力或需要跨国传送,将输电网络连结亦能提升输电系统的稳定性[2]:122。输电系统当中某单独一段输电线则可称之为输电线路(Line)。
通常而言,输电网络与配电网络同属一间公司,但自1990年代起不少国家发起电力自由化,使部分电力市场之中输电网络与配电网络未必属于同一公司[3]。
历史
商业供电的早期,直流电会以单一电压输送予客户使用,其后为改进电动机及其他设备的工作效率则改为输送多种电压以适应如照明、电动机或铁路等不同的应用[4][5]。由于直流电于低压高电流的输送时效率甚低,故需于负载中心附近设置小型发电机供电,类似现今的分散式发电[6]。
首条长距离交流电缆为1884年都灵国际展览中使用,约34千米(21英里)长,展示了交流电长距离输电的能力[5]。首个商用交流电系统1885年于罗马诞生,主要用于街灯照明,输电距离共19公里长。数月后伦敦亦首次使用了交流电系统[7]。威廉·史坦雷于1885年设计了首个实际可用的交流电变压器[8]。他在乔治·威斯汀豪斯的支援下于1886年于麻省展示了一套基于变压器的交流电照明系统。该系统由500伏西门子发电机推动,并以新设计的史坦雷变压器降至100伏来供应予大街上23所商店,4,000英尺(1,200米)的输电过程中仅有极少电力损失[9],由此推动威斯汀豪斯于该电其后开始安装交流电系统[8]。
1888年交流电动机诞生,为基于多相系统的异步电动机,分别由加利莱奥·费拉里斯和尼古拉·特斯拉独立研发。该设计其后由米哈伊·多利和-多布罗斯基和查理·尤金·兰斯洛特·布朗发展为现今的三相电[10]。然而,由于电力供应未能支援而未有即时使用[11][12]。1880年代后期,小型电力公司开始合并至较大型公司,例如欧洲成立了冈茨公司和AEG,美国则为通用电气及西屋电气,这些公司则有继续发展交流电系统但因技术问题未能立刻将各种电力系统合并[13]。随着交流电技术的进步,各种旧有的用电系统,例如单相交流电、多相交流电、高低压照明和直流电机等可以利用回转变流机和电动发电机等设备连接至一通用网络,从而达致交流电大规模发电及输电所带来的规模经济[13][14]。
首条单相高压交流电输电网于1890年启用,为威拉米特瀑布的水力发电厂输送电力至俄勒冈州波特兰,总长约14英里(23千米)[15]。首条三相高压输电线则在美因河畔法兰克福于1891年为1891年国际电能技术展览而兴建。内卡河畔劳芬与法兰克福之间则建于一条175公里长的15千伏特输电线[7][16]
20世纪期间,输电系统的电压一直上升。至1914年共有55套输电系统使用70千伏特以上的电压,最高则为150千伏特[17]。输电系统连接后使各发电机可以相连,从而减低了发电成本。电力网络的稳定性亦因此而增加而资本投入则有所减少。输电系统的发展亦容许设立水力发电等较遥远的发电设备[4][7]。直至今天,输电网络的范围亦因上述理由而合并越加扩展。
输电系统简述
如前所述,输电系统的作用为可靠且高效地输送电力。其外,建设及维护系统的时候亦需要将经济因素、安全性及冗馀等计算在内[2]。
根据焦耳第一定律,电能损失与电流的大小的平方成正比,故输电系统会大幅提高电压,从而减少输电线路中所流通的电流,继而减少输电过程中的电力损失[2]。另一方面,电压越高,则两端变压站所需成本亦会有所上升,线路之间的绝缘能力亦需要提高。所以电压不能无限制地提高,而需与成本、用电量之间作相应配合。交流电使用变压器作为提高和降低电压的工具,而高压直流输电技术虽可继续减少电力损失却则需要更为复杂的电力电子设备,故通常仅用于长距离大规模输电之上[18]。高压直流输电技术亦用于超越50公里长的海底电䌫以及连接不同步的电力网络,例如60赫兹与50赫兹之间的连接[18]。大多数输电系统皆使用三相交流电,而电气化铁路中则或会使用单相电输电系统。
除了输送电力期间有电力损失的考虑,输电系统在连接之后亦能同时提高系统的可靠性并降低发电成本和资本投入[2]。电力公司需要为客户于任何时候提供电力,但电力需求并非固定,例如日间的电力需求比深夜时为高,而发电厂则须在满足顶峰需求之外提供额外的发电容量以作冗馀。当输电系统连接后即可减少整体所需的冗馀发电容量,从而减低整套电力系统的资本投入,而因单一发电机在发电量越高时成本亦随之增加,故亦能减少发电的平均成本[2]:268。当输电系统扩大之后,因电网或会跨越不同地区,则电网亦能将各地需求平均分配至各发电厂,从而进一步降低冗馀发电容量。例如一个大型电网的南方于夏季天气炎热而需要冷气,北方则于冬季天气寒冷供暖,电网整体则不需要为两方各自建设按年计算的冗馀发电容量。另外,当输电系统以网状连结时,当某一输电线路受损又或修理之时,亦能使用其他线路继续输电。输电系统亦使发电厂可各自分工,例如整天不变的基本电力需求可由基本负载发电厂供应,而基础需求与顶峰需求之间则可由快速启动的尖峰负载发电厂负责。
长距离电力输送的成本非常低,于美国最低仅为每度电0.005美元[19],于英国亦仅为每度电0.2便士[20],使距离较远的电力供应商亦能便宜地提供电力[21]。长距离电力输送亦使偏远可再生能源能纳入至电力系统之中,包括太阳能电厂、风力发电场、海上风力发电场等一般与负载中心距离甚远的发电方法亦依靠输电系统来减低电力损失。
发电侧
发电机的总端电压(发电电压)对比输配电力系统通常较低,视乎其额定容量约为2.3千伏特至30千伏特之间。发电机不远处即连接着变压器以提高电压至输电电压,发电厂内或有变电站或开关站将发出的电力导至不同的输电线路。
架空电缆
高压架空电缆仅使用空气作绝缘使其成本相对地底电缆大为下降。导体绝大多数为铝合金,多股导体再绕成一条电缆,电缆中间亦可能加入钢缆以强化该电缆[2]:198。铝合金导体相对铜导体可以于略低效能的情况下大幅降低成本,铝合金重量较低亦能减少输电塔所需支撑的拉力,从而降低输电塔需要的结构强度,亦能降低土木工程相关的成本[2]:198。导体面积由12mm2至750mm2不等,视乎该输电线路所需的载流容量。较大的导体会因集肤效应使电流集中于电缆的外围,从而降低内部导体的成本效益[2]:202。故此,高压架空电缆可将电缆改为中空以节省材料[2]:202,亦可将同一相分隔为数条小电缆组(Bundle)而非合为一组大电缆同时亦能减少因电晕放电而导致的能量损失[2]:203。另外,架空电缆三相的三组电缆亦需要按距离如双绞线般交换位置以减少外界环境做成三相不平衡,称之为转置相位[2]:168。
架空电缆仅依靠空气作绝缘,故电缆之间需要留有最小安全距离。强风或低温等恶劣天气下则有可能导致电缆随风漂动而使电缆之间的距离低于最小安全距离,使三相之间或对地发生电弧,引致设备故障或停电[22]。风亦能把架空电缆吹动而造成大波幅低频率的震动,称之为电线跳动又或导体跳动[2]:204-205。
地底输电
电力输送亦可利用地下高压电缆进行。地底电缆占地需求较少,对景观影响亦较低,受天气干扰的机会亦较少[1]。然而,地底电缆本体成本较高,挖掘及铺设电缆的工程费用更是架空电缆的数倍之多。虽然自然发生故障的机会稍低,因路面工程而误伤电缆的机会却因而增加,发生故障后确认位置与维修所需的时间亦是更长。
地底电缆有非常多种类,常见的为充油电缆和XLPE电缆,前者使用油、纸等材质来绝缘和散热,后者则使用特制塑胶绝缘[1]。电缆亦会外覆盖上防水层。如果地底电缆直接置于地底(Direct Burial),则更会在外层加上金属枝作保护,否则应将电缆置于石槽或铁管内[2]:211。有些输电线路会把这些槽管充油,并于故障发生时使用液态氮将该段电缆冻结以供维修,唯这种方法会延长维修需时,亦会提高维修费用[23][24][25]。
地底电缆的主要限制为其温度限制,故载流容量通常不如架空电缆。长距离的交流电地底电缆亦会产生显着的电容,而须作功率修正。直流电地底电缆不会产生电容故不受其限制,但就需要于变电站设置转换器[18]。
损耗
虽然输电系统的电压皆已大幅提高,长距离输送电力之时仍会有一定程度的损耗,例如一条100 mi(160 km)的763千伏特架空电缆在输送1吉瓦时有约0.5%至1.1%的损耗,但若改用345千伏特则会有4.2%的损耗[18]。假设负载中心用电量不变,即输电系统须输送相同能量时,由于电能损失与电流的大小的平方成正比[18],亦可因应电流减少而相应缩减电缆的横切面积,从而大幅节省输电电缆的成本。长距离输电的电压一般可达115千伏特至1,200千伏特。若电压继续提高则电晕放电效应等损耗亦会随之增加[2]:100,如对地达2,000千伏特时电晕放电的损耗将抵消降低电流的好处。将同一相电力分组(bundle)输送或直接加大电缆导体皆可降低电晕放电效应[26]。
焦耳第一定律中电力的损耗除与电流有关外,亦与电缆本身所带有的电阻成正比关系。电缆的材质、温度、卷扎方法、集肤效应等皆会影响电阻。当电缆温度上升时,其电阻亦随之增加。集肤效应使较高频率的交流电有更高损耗。这些电阻皆可使用数学模型估计[27]。
输配电损耗为发电量与客户用电量之间的差异,主要可以归于输电和配电系统的损耗。美国的输配电损耗于1997年估计为6.6%[28],2007年为6.5%[28],2013年至2019年则为5%[29]。
1980年时估计直流电输电符合成本效益的最长距离为7,000公里,而交流电则为4,000公里,但现今世上所有输电线路远远短于此上限[19]。
交流电输电系统中,输电的效能受电缆的电感与电容显著的影响。电缆自身为电阻与电感的集合,而电缆与大地之间自然会产生电容。因这些特性而产生的电流为无功功率,仅会在输电网络间储存及输送,无法为负载提供实际功率。然而电流不论有否做功,依然会因电阻而产生损耗,故设计输电系统时亦须减少系统当中的电容和电感,提升功率因数,减低因无功电流而做成的损耗。由于电感和电容是输电网络与电缆的固有特性无法直接消除,故只可额外加入电感和电容以抵消其效果,例如电容器组可与电缆串联以抵消电缆自身的电感[2]:37。输电系统亦会连同电抗器、相移变压器及静止无功补偿器等补偿其无功功率[2]:36-38。
高压直流输电
高压直流输电(HVDC)用于长距离输送大量电力,或用以连接不同步的输电网络[18]。当输电距离越加延长,交流电的损耗亦会越来越大,直至超过某距离后使用直流电输电就会较为便宜,因建设直流电塔以及于输电两端建设转换变电站的费用比交流电损耗的所产生的费用为低。高压直流输电亦会用于海底电缆,因为交流电在海底会产生较大电容导致交流电升压而未能使用[30]。这些高压直流海底电缆主要用于连接岛屿至电网,例如大不列颠岛与欧洲大陆之间、大不列颠岛与爱尔兰岛之间以及塔斯马尼亚与澳洲大陆之间、纽西兰两岛之间等,可长约600公里左右[31]。
高压直流输电亦能按负载流分析控制交流电电力潮流。输电线中输送的电力增加时,电力输送源(发电机)与接收端之间的功角亦会随之上升,而功角过高时会使两者不再同步,即功角稳定问题。由于直流电由输电线两端独立转换,所以不会受功角所限制,而可输送电缆所容许的最大容量。高压直流输电也可用于不同频率的交流电系统互联[18],例如日本有60赫兹与50赫兹两套不同电网,而高压直流输电则可将两者连接。
转置相位
当电流流经输电线时将产生感应磁场并影响附近电线的电感。电线导体的互感与导体之间的相互位置有关系。一般输电塔上的三相电线会分别置于不同的高度,使位于中间的导体所得的互感与另外两相有显着的分别,再加上三条导体与大地的距离不一致而各有不同电容,最终引致三相的输送电力不平衡。故此,输电线须定期于转置塔转置相位使三相所受的互感和对地电容大致相等。这种操作亦名线位转换[2]:168。
次输电系统
次输电系统为输电系统中使用较低电压的一部分[2]:91。由于极高压的设备较为大型且昂贵,一般情况下不会将所有变电站连接至输电系统中,而是将较低电压的变电站连接至配电系统。在一些较大型的极高压输电系统中,将输电系统直接连接至配电系统亦有同样问题,故就需要使用次输电系统作为两者之间的连接。次输电系统通常为环状连接以避免单一线路故障时影响大量客户,环状连接亦可作常闭连接以提供无间断供电。较低电压的次输电系统的建筑结构亦较为简单且占地较少,亦使地下输电成本较低[2]:91。
次输电系统与输电系统或配电系统之间没有固定边界,亦不能单靠电压判断。港灯的输电系统中包含132千伏特及275千伏特的输电线路,但并没有区分次输电系统与输电系统,两者皆会直接连接至配电系统[1]。北美的次输电系统通常为69千伏特、115千伏特或138千伏特。部份次输电系统为输电网络因应发展而扩张及提高电压后由输电系统转换而成。次输电系统既带有输电系统输送大量电力的特征,亦有配电系统为地区供电的特点[32]。
配电侧
于输电系统的分支变电站会将高压电转换为较低电压并转至配电系统。
输电系统控制
容量
每条输电电缆以及输电线路皆有其额定容量,而此限制的原因按输电线路的长度而有所不同。一条较短的线路主要受电缆导体的耐温极限限制,若太多电流通过时电缆或会因为受热变软或延长最终导致接地故障。中等距离的输电网络则受电压降限制,长距离交流电则为系统稳定性限制。高压直流输电如前述没有功角问题,故只受温度和电压降限制。由于难以监测电缆各处的温度,一般作系统控制时会较为保守。分散温度感应系统为即时监测温度以提升输电容量的第一步。现亦有使用光纤置于电缆之中作为监测温度的方法。从一边射入激光时,光线会照温度作不同程度的拉曼散射,而从另一端检测光线后即可得出电缆的温度,从而提升输电电缆的输电容量[33]。
负载流控制
负载流分析又名电力潮流,是输电网络中整体电力输送的数值分析,通常使用一线图和每单位系统以简化计算,以集中处理电压、功角、有用功及无用功等数值[34]。负载流分析用于计算稳态下的操作,并从此可得出在现有发电及负载之下系统应如何最佳化以在符合输电要求的同时减少消耗并降低成本,亦可推算及计划日后所需的系统扩展[35]。负载流分析亦能用于分析各设备故障后的情况,让输电系统拥有者提前作N+1冗馀等准备[34]。
故障保护
输电过程中各种系统设备皆有可能发生故障,而保护系统则是输电系统中对抗故障的重要一环。保护系统须尽可能减少故障发生、故障发生时限制其影响及破坏、降低故障时须关闭的输电线路以及容许输电系统尽早回复正常[2]:127。当中,其主要利用保护继电器及断路器以将输电系统的故障隔离[2]:127。在设计过程中亦须以N+1冗馀作为标准,使故障发生时不会因为单一故障而做成停电。当电力负载大于最大发电量时,输电系统亦应作供电限制等方式作限制,而避免因供电不足而最终导致频率出错而引起停电。紧急情况下亦须作轮流停电(Rolling blackout)或负载移除(Load shedding)以保护整个电力供应系统[2]:263。
通讯
输电系统的控制工程师现通常需要利用数据采集与监控系统遥距控制整体输电网络[1]。设于输电线路两端的保护继电器须作有效通讯以监测流入及流出的电流以作比较及计算[2]:127。输电系统上的设备亦需要透过通讯网络将资料传送回控制中心。由于电力系统的保护必须非常可靠且迅速,一般不会使用电讯商的通讯网络,而是采用自行建设的通讯系统。一般输电系统所使用的通讯系统会使用微波、电话线或光导纤维等方式[1]。
输电线亦能用作输送数据,称之为电力线通信。电力线通讯设备会于输电线一端输入高频率讯号,并于另一端利用傅里叶分析或其他方式将高频讯号分离并作分析。光纤一般会独立设置,但亦能置于输电线的中央,称之为复合光缆地线。
输电系统的数学理论
高压输电系统的好处
高压输电系统令远距离输送电力的损耗较少,从而减低发电及操作成本。
在极为简单的数学模型中可以假设输电网路由单一发电机输送电力至单一负载,由交流电源和纯电阻表示,而输电线仅有电阻。
由于线路为串联且没有变压器,则输电线的电阻与负载的电阻则为分压器。串联中所有零件皆有同样电流流通,为。故此,负载的所收到的可用功为:
现在输电线路中加上变压器,于供电最后阶段变压为低电压高电流。理想变压器仅将输入的能量转换,使电压按比例减少时,电流则以增加。同样按分压器方法计算,输电线路的电阻经过变压器后仅为,而可用功则为:
如,即电压于负载则由高压降至低压,从上述算式可见输电网络的损耗将有所减少。
输电系统模型及矩阵
大多数时候,输送系统的模型只会关注输电线两端的特性,包括传送及接收两端的电压和电流。输电网则可以化为一个2x2矩阵的“黑盒”:
输电线一般假设为对称的网络,一次侧与二次侧相互对调时对输送电力没有影响。输电矩阵T会有以下特性[2]:103:
当中四个参数A、B、C及D由输电网络的电阻(R)、电感(L)、电容(C)、并联电导(G)按照不同模型所组成。模型中的大写字母皆为整条输电线该参数的总和。
无损输电线
无损输电线为最不准确的模型,一般只用于极短的输电线上。这种模型中一次侧与二次侧的电压与电流相同。
短线模型
短线模型主要用于约50英里(80千米)长的输电线。短线模型中电容和并联电导数值较少而可以忽略而只须计算由电阻和串联电感组成的阻抗(Z)[2]:101。最终参数为、及,故矩阵则为:
中线模型
中线模型主要用于约80—250英里(130—400千米)长的输电线。此模型中由于输电线路延长,不可再忽略输电线所带有的电容及并联电导。此模型将所有电容和并联电导加起,然后于输电线两侧各置一半。模型可见上方一条串联阻抗,头尾各有电容连至大地,故又可按其形状称之为“π模型”[2]:103。中线模型的矩阵为:
由此输电线会有以下特性:
- 电压会于低负载时上升(费冉倜效应)
- 接收侧(二次侧)电流可高于输送侧(一次侧)
长线模型
长线模型由电报员方程推论而得出,主要用于150英里(240千米)或以上的输电线。长线模型与中线模型的主要分别为电容和并联电导不再位于输电线的两端,而是分配于整条输电线,使其有多于两条并联接地电容和电导[2]:102。此举能提高模型的准碓性,但需要作较为复杂且多次的计算。下为长线模型的参数,而为传播常数.
长线模型可以用于计算输电线上任何一点的电流和电压,如须计算接收端的电流和电压则须把替换为,即输电线的总长度。
负载流分析
商业输电系统的网络甚为复杂,难以人手计算,一般皆会使用输电网络分析器自动计算,但其亦会依据牛顿-拉弗生法计算。首先将系统各处定为汇流排,然后按其特质分为松弛汇流排、发电机汇流排及负载汇流排,然后将未知数值作合理假设作为起始(flat start),再按以下公式叠代直至误差少于精确度标准[34]:
而及称为失配公式(mismatch equations),则为雅可比矩阵,与分别为导纳矩阵的实数及虚数部分:
对健康的影响
有数个大型研究中无法找到居住于输电线路附近与罹患疾病甚至癌症之间的关系。一个1997年的研究显示不论与输电线或变电站的距离有多近,皆没有发现癌症或其他疾病的风险有所增加[36]。
主流科学证据皆认为低功率低频率的输电线路电磁辐射不会构成任何长期或短期的风险,但部分研究则发现部分疾病或与于输电线旁居住或工作有关连。整体而言没有负面健康影响足以构成不居住于输电系统旁的原因[37]。
纽约州公共事业委员会于1978年举行一项研究去评估电场对人体健康的影响,当中将一座新建的765千伏特输电线路边沿的测量值,每米1.6千伏特,定为日后州内新建输电线路的最高容许值。该研究亦限制新建的输电网络最高电压值为345千伏特[38]。1990年9月11日,纽约州公共事业委员会再推行有关磁场对人体健康影响的研究,并将线路边沿标准定为200mG[39]。如日常用品相比较,风筒或电暖毡约产生100mG至500mG的磁场。电动剃须刀等为每米2.6千伏特。电场可利用屏蔽减少,而磁场则只能依靠最佳化各相的位置来减少[40][41]。当提出兴建新输电线路时,交予监管机构的申请表中通常需要加入输电线边沿的电场和磁场分析。这些分析通常由电力公司或顾问使用模型软件计算而得。
暴露于1高斯的高磁环境可引起急性生理反应。仅有有限证据指出住所环境中会对人体有致癌风险,对动物实验的证据亦不足够。其中,儿童白血病或与暴露于0.003至0.004高斯有关连,但一般家居环境于欧洲只有约上述数字的五分之一,于北美则只有约三分之一[42][43]。
地球自然的地磁场约为0.35-0.70高斯,而一般人长期暴露于磁场中的标准则为400高斯[42]。
输电线路沿线使用的除草剂及树木生长限制剂或对健康有影响[44]。
各国输电政策
输电系统经营权
部分监管机构将输电系统定义为自然垄断的一种[45][46],但亦有不少国家将输电系统与供电系统的其他部分分离,打破电力产业的垂直整合。
西班牙为首个成立地区输电组织的国家。西班牙电网公司于1985年由西班牙政府成立,负责管理西班牙全国的输电系统。英国国家电网公司则于1990年中央电力局解体后成立,拥有英格兰和威尔斯的输电系统,并营运苏格兰南部的输电系统。相反,苏格兰电力则是一间垂直整合的电力公司,拥有完整的发电、输电、配电及零售业务。香港两间电力公司都是垂直整合的电力公司。
美国
联邦能源监管委员会(FERC)是美国电力输送及批发的主要监管机构,1920年以联邦电能委员会之名成立。配电业务及售电则由各州各自管理。两项较为重要的美国输电系统政策为888号命令及2005年能源政策法案。
888号命令订立于1996年4月24日,用以“移除电力批发市场的障碍并由此为国内电力用户提供更有效率及价格低廉的电能。此政策将纠正输电系统中控制何种电力才能输送的不正当垄断。”[47]888号命令要求所有拥有、控制或营运跨州输电系统的公共事业者设立不带差别待遇的输电收费机制。这种收费机制使发电业者可使用现有建成的输电系统,而输电系统的拥有者亦可从其中收回相关成本[47][48]。2005年能源政策法案则于2005年8月8日订立,为联邦能源监管委员会提供更多权力以管制输电系统。委员会可以就输电系统的稳定性标准执法,亦须设立诱因以鼓励输电系统的投资[49]。
历史上本地政府负责管控当地的输电系统,故会为有益于其他州份而对该州份无益的行为施加大量限制。有较低廉电费的地区亦会反对跨州交易以免电费上升。美国的发电业务比输电业务发展快达四倍,因输电系统的建设需要跨州充份合作而难度有所增加。政策角度而言电网变得巴尔干化,以致前美国能源部长比尔·理查森指其为“第三世界电网”[50]。2005年能源政策法案容许美国能源部批核输电系统的建设,但当该部使用权力建立两条国家利益输电走廊时被14名参议员联署指其过于进取[51]。
特殊输电系统
铁路电网
有些国家的电力机车或电联车使用低于一般电网的频率,又或会使用直流供电,故会建立铁路专用的单相或直流铁路电网[52]。例子包括欧洲的16 2/3赫兹电网。
超导体输电线
高温超导技术能无损耗地输送电力,故或会革新输电系统的运作方式。现时超导体可在高于液氮温度的情况下保持无损耗性质,使其在于高负载之下有商业价值[53]。一般估计以此方法输送电力可将电力损耗减半,馀下电力主要用于冷却设备。部分公司如联合爱迪生及美国超导体等已开始商业制造上述系统[54]。一种可能的未来系统为液氮超级电网,将输电线于液氮管线相连从而消除冷却费用。
超导体输电线特别适合于大城市中的商业区等集中负载区使用,因于当地通常皆需使用地底电缆,而且地役权相当昂贵[55]。
地点 | 长度 | 电压 | 容量 | 日期 |
---|---|---|---|---|
佐治亚州卡罗尔顿[57] | 30米 | 12.4千伏特 | 15.5百万瓦 | 2000年 |
雅宾利[58] | 350米 | 34.5千伏特 | 48百万瓦 | 2006年 |
长岛贺布克[59] | 600米 | 138千伏特 | 574百万瓦 | 2008年 |
三友 | 5000百万瓦 | 2013年提出 | ||
曼克顿:海德勒计划 | 2014年提出 | |||
德国埃森[60][61] | 1公里 | 10千伏特 | 40百万瓦 | 2014年 |
单线地回路
单线地回路系统使用单条电缆输送单相电力,并以大地作为回路,以减少为偏远地区提供电力的成本。此系统主要用于效区电气化,但亦有用于如水泵等较大的偏远负载及海底高压直流输电。
无线输电
尼古拉·特斯拉及八木秀次都曾尝试设计大型无线输电系统,但两者皆没有成功。
2009年11月,激光动力(LaserMotive)凭一款可驱动攀线器上升1公里的激光发射器赢得美国太空总署2009年供能激光挑战(NASA 2009 Power Beaming Challenge)。该系统可使接受端取得1千瓦的能量。2010年美国太空总署与私人公司签约以研究有关激光输能系统驱动低轨道卫星以及利用激光发射火箭的设计。太空太阳能亦有无线输电的研究以便将太空中收集所得的能量以微波或激光形式传送到地球,在地球表面接收后转化为电能。
输电控制系统保安
美国政府承认美国国内的输电网络或受网络战的影响[62][63]。美国国土安全部与业界合作辨识控制系统的弱点并提升网络的保安。美国政府亦确保下世代的智能电网会配有合适的保安系统[64]。
2019年6月俄罗斯承认其电网或受到美国纲络攻击[65]。纽约时报报导指美国网战司令部的黑客设置了或有能力扰乱俄罗斯电网的恶意软件[66]。
纪录
- 最高容量系统:12吉瓦,准东-皖南±1100千伏特高压直流输电系统(中华人民共和国)[67][68]
- 最高交流电压:
- 最大双回线输电线路:北区-磐城输电线 (日本).
- 最高输电塔:345米高,长江跨江输电网(中华人民共和国)
- 最长输电线路:1700公里长,因加-沙巴输电网(刚果民主共和国)
- 最长输电线段(两座输电塔之间):5376米,阿米拉力线段(格陵兰)
- 最长海底电缆:
- 最长地底电缆:
参见
参考资料
- ^ 1.0 1.1 1.2 1.3 1.4 1.5 Transmission & Distribution System. 香港电灯有限公司. [2014].
- ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 Pansini, Anthony J., Power Transmission and Distribution, Fairmont Press, 2004, ISBN 0-88173-503-5
- ^ A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets (PDF). 美国能源部 Federal Energy Management Program (FEMP). 2002-05 [2018-10-30].
- ^ 4.0 4.1 Thomas P. Hughes. Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: Johns Hopkins University Press. 1993: 119–122. ISBN 0-8018-4614-5.
- ^ 5.0 5.1 Guarnieri, M. The Beginning of Electric Energy Transmission: Part One. IEEE Industrial Electronics Magazine. 2013, 7 (1): 57–60. doi:10.1109/MIE.2012.2236484.
- ^ National Council on Electricity Policy. Electricity Transmission: A primer (PDF). [2019-09-17].
- ^ 7.0 7.1 7.2 Guarnieri, M. The Beginning of Electric Energy Transmission: Part Two. IEEE Industrial Electronics Magazine. 2013, 7 (2): 52–59. doi:10.1109/MIE.2013.2256297.
- ^ 8.0 8.1 Great Barrington Experiment. edisontechcenter.org.
- ^ William Stanley - Engineering and Technology History Wiki. ethw.org.
- ^ Arnold Heertje; Mark Perlman. Evolving Technology and Market Structure: Studies in Schumpeterian Economics. : 138.
- ^ Carlson, W. Bernard. Tesla: Inventor of the Electrical Age. Princeton University Press. 2013: 130. ISBN 1-4008-4655-2.
- ^ Jonnes, Jill. Empires of Light: Edison, Tesla, Westinghouse, and the Race to Electrify the World. Random House Trade Paperbacks. 2004: 161. ISBN 978-0-375-75884-3.
- ^ 13.0 13.1 Parke Hughes, Thomas. Networks of Power: Electrification in Western Society, 1880-1930. JHU Press. 1993: 120–121.
- ^ Garud, Raghu; Kumaraswamy, Arun; Langlois, Richard. Managing in the Modular Age: Architectures, Networks, and Organizations. John Wiley & Sons. 2009: 249.
- ^ Argersinger, R.E. Electric Transmission of Power. General Electric Review. 1915, XVIII: 454.
- ^ Kiessling F; Nefzger P; Nolasco JF; Kaintzyk U. Overhead power lines. Berlin, Heidelberg, New York: Springer. 2003: 5. ISBN 978-3-642-05556-0.
- ^ Bureau of Census data reprinted in Hughes, pp. 282–283
- ^ 18.0 18.1 18.2 18.3 18.4 18.5 18.6 American Electric Power. Transmission Facts (PDF). (原始内容 (PDF)存档于2011-06-04).
- ^ 19.0 19.1 Paris, L.; Zini, G.; Valtorta, M.; Manzoni, G.; Invernizzi, A.; De Franco, N.; Vian, A. Present Limits of Very Long Distance Transmission Systems (PDF). CIGRE International Conference on Large High Voltage Electric Systems, 1984 Session, 29 August – 6 September. Global Energy Network Institute. 1984 [2011-03-29].
- ^ Dave Andrews. Electric power transmission costs per kWh transmission / National Grid in the UK (note this excludes distribution costs). Claverton Group. Claverton Energy Research Group. 2010-02-11 [2020-08-07].
- ^ NYISO Zone Maps. New York Independent System Operator. [2014-01-10].
- ^ Hans Dieter Betz; Ulrich Schumann; Pierre Laroche. Lightning: Principles, Instruments and Applications. Springer. 2009: 202-203 [2009-05-13]. ISBN 978-1-4020-9078-3.
- ^ Banerjee, Neela. AFTER THE ATTACKS: THE WORKERS; Con Edison Crews Improvise as They Rewire a Truncated System. September 16, 2001 –通过NYTimes.com.
- ^ INVESTIGATION OF THE SEPTEMBER 2013 ELECTRIC OUTAGE OF A PORTION OF METRO-NORTH RAILROAD’S NEW HAVEN LINE. documents.dps.ny.gov. 2014 [2019-12-29].
- ^ NYSPSC case no. 13-E-0529
- ^ California Public Utilties Commission. CORONA AND INDUCED CURRENT EFFECTS (PDF). 2005-08 [2020-08-04].
- ^ Curt Harting. AC Transmission Line Losses. 史丹佛大学. 2010-10-24 [2019-06-10].
- ^ 28.0 28.1 Where can I find data on electricity transmission and distribution losses?. Frequently Asked Questions – Electricity. 美国能源信息署. 2009-11-19 [2011-03-29].[永久失效链接]
- ^ How much electricity is lost in electricity transmission and distribution in the United States?. Frequently Asked Questions – Electricity. 美国能源信息署. 2019-01-09 [2019-02-27].
- ^ Donald G. Fink; H. Wayne Beatty. Standard Handbook for Electrical Engineers 11. McGraw Hill. 1978: 15-58. ISBN 0-07-020974-X.
- ^ Guarnieri, M. The Alternating Evolution of DC Power Transmission. IEEE Industrial Electronics Magazine. 2013, 7 (3): 60–63. doi:10.1109/MIE.2013.2272238.
- ^ Donald G. Fink; H. Wayne Beaty. 18.5. Standard Handbook for Electrical Engineers 15. 2007. ISBN 978-0-07-144146-9.
- ^ Amira, Zrelli; Bouyahi, Mohamed; Ezzedine, Tahar. Measurement of Temperature through Raman Scattering. Procedia Computer Science. 2015, 73: 350–357. ISSN 1877-0509. doi:10.1016/j.procs.2015.12.003.
- ^ 34.0 34.1 34.2 電力潮流分析互動式網頁 (PDF). 电力潮流分析. 大华科技大学. [2020-08-09].
- ^ Low, S. H. Convex relaxation of optimal power flow: A tutorial. 2013 IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid. 2013: 1–06. ISBN 978-1-4799-0199-9. doi:10.1109/IREP.2013.6629391.
- ^ The Health Report / ABC Science. Power Lines and Cancer. Australian Broadcasting Corporation. 1997-06-07. (原始内容存档于2011-04-17).
- ^ Backgrounder. Electromagnetic fields and public health. WHO. WHO Media centre. 2006-05 [2020-08-08].
- ^ State of New York, Public Service Commission. Opinion 78-13 (PDF). [2020-08-08].
- ^ State of New York, Public Service Commission. Case 26529 (PDF). [2020-08-08].
- ^ EMF Report for the CHPE. TRC: 1–4. 2010-03 [2018-11-09].
- ^ Electric and Magnetic Field Strengths (PDF). Transpower New Zealand Ltd: 2. [2018-11-09].
- ^ 42.0 42.1 Electromagnetic fields and public health. Fact sheet No. 322. 世界卫生组织. June 2007 [23 January 2008].
- ^ Electric and Magnetic Fields Associated with the Use of Power (PDF). National Institute of Environmental Health Sciences. June 2002 [29 January 2008].
- ^ North American Electric Reliability Corporation. Transmission Vegetation Management NERC Standard FAC-003-2 Technical Reference (PDF). North American Electric Reliability Corporation: 14. [2020-08-08].
- ^ Raghuvir Srinivasan. Power transmission business is a natural monopoly. The Hindu Business Line. The Hindu. 2004-08-15 [2008-01-31].
- ^ Lynne Kiesling. Rethink the Natural Monopoly Justification of Electricity Regulation. Reason Foundation. 2003-08-18 [2008-01-31]. (原始内容存档于2008-02-13).
- ^ 47.0 47.1 Order No. 888. United States of America Federal Energy Regulatory Commission.
- ^ Order No. 888, FERC. Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities. [December 7, 2016]. (原始内容存档于December 19, 2016).
- ^ Energy Policy Act of 2005 Fact Sheet (PDF). FERC Washington, D.C. 8 August 2006 [December 7, 2016]. (原始内容 (PDF)存档于December 20, 2016).
- ^ BILL RICHARDSON. America’s Third-World Energy Grid. Politico Magazine. 2014-01-07 [2020-08-08].
- ^ Wald, Matthew. Wind Energy Bumps into Power Grid’s Limits. 纽约时报. 27 August 2008: A1 [12 December 2008].
- ^ Hill, R.J. Electric railway traction. Part 3: Traction power supplies. Power Engineering Journal. 1994, 8 (6): 275–286. ISSN 0950-3366. doi:10.1049/pe:19940604.
- ^ Jacob Oestergaard; et al. Energy losses of superconducting power transmission cables in the grid (PDF). IEEE Transactions on Applied Superconductivity. 2001, 11: 2375. doi:10.1109/77.920339.
- ^ Reuters, New Scientist Tech and. Superconducting power line to shore up New York grid. New Scientist.
- ^ Superconducting cables will be used to supply electricity to consumers. [2014-06-12]. (原始内容存档于2014-07-14).
- ^ Superconductivity's First Century. [August 9, 2012]. (原始内容存档于August 12, 2012).
- ^ Sinha, U.K.; Lindsay, D.T.; Hughey, R.L.; Stovall, J.P.; Gouge, M.J.; Lue, J.W.; Haldar, P.; Selvamanickam, V.; Vo, N. Development and test of world's first industrial high temperature superconducting (HTS) power cable 2: 442–447. 2001. doi:10.1109/PESW.2001.916882.
- ^ HTS Transmission Cable. www.superpower-inc.com.
- ^ IBM100 - High-Temperature Superconductors. www-03.ibm.com. August 10, 2017.
- ^ Patel, 03/01/2012 | Sonal. High-Temperature Superconductor Technology Stepped Up. POWER Magazine. 2012-03-01.
- ^ Operation of longest superconducting cable worldwide started. phys.org.
- ^ Spies 'infiltrate US power grid'. April 9, 2009 –通过news.bbc.co.uk.
- ^ Hackers reportedly have embedded code in power grid - CNN.com. www.cnn.com.
- ^ UPDATE 2-US concerned power grid vulnerable to cyber-attack. April 8, 2009 –通过in.reuters.com.
- ^ US and Russia clash over power grid 'hack attacks. BBC News. 2019-06-18.
- ^ How Not To Prevent a Cyberwar With Russia. Wired. 2019-06-18.
- ^ Development of UHV Transmission and Insulation Technology in China (PDF).
- ^ 准东-皖南±1100千伏特高压直流输电工程竣工投运.
- ^ India Steps It Up. Transmission & Distribution World. January 2013.
伸延阅读
- Grigsby, L. L., et al. The Electric Power Engineering Handbook. USA: CRC Press. (2001). ISBN 0-8493-8578-4
- Hughes, Thomas P., Networks of Power: Electrification in Western Society 1880–1930, The Johns Hopkins University Press, Baltimore 1983 ISBN 0-8018-2873-2
- Reilly, Helen. Connecting the Country – New Zealand’s National Grid 1886–2007. Wellington: Steele Roberts. 2008: 376 pages. ISBN 978-1-877448-40-9.
- Pansini, Anthony J, E.E., P.E. undergrounding electric lines. USA Hayden Book Co, 1978. ISBN 0-8104-0827-9
- Westinghouse Electric Corporation, "Electric power transmission patents; Tesla polyphase system". (Transmission of power; polyphase system; Tesla patents)
- The Physics of Everyday Stuff - Transmission Lines