立方图
外观
此條目可参照英語維基百科相應條目来扩充。 (2019年4月23日) |
在图论中,若一个图的每个顶点度数均为三,则称其为立方图(Cubic graph)、3-正则图或三次图。
对称性
1932年,Ronald M. Foster首先寻找立方对称图的例子,并收集为Foster census。[1]许多著名的图都是立方对称图,如汤玛森图、彼得森图等。W. T. Tutte用满足下列性质的最大整数s来对立方对称图进行分类:图的自同构群在其所有长度为s的路径(其中不能有重复的边)组成的集合上作用是传递的。他证明了s最大只能取5,也即s的可能值是1到5。[2]
图着色
根据布鲁克定理,除了K4以外的任何连通立方图都可以用至多三种颜色染色。也即,这样的连通立方图至少存在一个包含n/3个顶点的独立集,其中n是该图的顶点数。
参考文献
- ^ Foster, R. M., Geometrical Circuits of Electrical Networks, Transactions of the American Institute of Electrical Engineers, 1932, 51 (2): 309–317, doi:10.1109/T-AIEE.1932.5056068.
- ^ Tutte, W. T., On the symmetry of cubic graphs, Can. J. Math., 1959, 11: 621–624, doi:10.4153/CJM-1959-057-2.
外部連結
- Royle, Gordon. Cubic symmetric graphs (The Foster Census). (原始内容存档于2011-10-23).
- 埃里克·韦斯坦因. Bicubic Graph. MathWorld.
- 埃里克·韦斯坦因. Cubic Graph. MathWorld.