跳转到内容

立方图

维基百科,自由的百科全书

这是本页的一个历史版本,由Candidadida留言 | 贡献2020年12月27日 (日) 08:32 图着色:​ 修正笔误)编辑。这可能和当前版本存在着巨大的差异。

彼得森图是立方图
完全二分图 是立方二分图

图论中,若一个的每个顶点度数均为三,则称其为立方图(Cubic graph)、3-正则图三次图

彼得森图汤玛森图等都是立方图。

对称性

1932年,Ronald M. Foster英语R. M. Foster首先寻找立方对称图英语Symmetric graph的例子,并收集为Foster census英语Foster census[1]许多著名的图都是立方对称图,如汤玛森图彼得森图等。W. T. Tutte英语W. T. Tutte用满足下列性质的最大整数s来对立方对称图进行分类:图的自同构群在其所有长度为s的路径(其中不能有重复的边)组成的集合上作用是传递的。他证明了s最大只能取5,也即s的可能值是1到5。[2]

图着色

根据布鲁克定理,除了K4以外的任何连通立方图都可以用至多三种颜色染色。也即,这样的连通立方图至少存在一个包含n/3个顶点的独立集,其中n是该图的顶点数。

根据Vizing定理,任一立方图的边色数英语Edge chromatic number只能为三或四。

参考文献

  1. ^ Foster, R. M., Geometrical Circuits of Electrical Networks, Transactions of the American Institute of Electrical Engineers, 1932, 51 (2): 309–317, doi:10.1109/T-AIEE.1932.5056068 .
  2. ^ Tutte, W. T., On the symmetry of cubic graphs, Can. J. Math., 1959, 11: 621–624, doi:10.4153/CJM-1959-057-2 .

外部連結