火箭推进剂
火箭推进剂是为火箭发射提供动力的物质。一般以某种形式大量存储在推进剂容器里,被用来大量从火箭发动机喷射出以流体喷射物的形式,以产生推力作为推进。燃料推进剂往往与氧化剂推进剂燃烧产生大量非常热的气体。这些气体膨胀并从喷嘴喷出,不断加速,从火箭底部冲出产生推力直到火箭达到极高的速度。有时推进剂不会燃烧,但可以从外部加热都达到更好的效果。对于较小的实验推进器,使用压缩气体通过推进喷嘴喷出以推动飞船。
化学火箭推进剂是最常用的,火箭通过放热化学反应产生热气体达到推进目的。
在离子推进器中,推进剂是带电的原子,以磁性排斥的方式从飞船尾部推出。然而磁加速离子驱动器通常不被认为是火箭,而是一个使用电加热和磁喷嘴的类似级推进器。
概述
化学推进剂
主要有三种类型的推进剂:固体,液体,和混合型。
固体推进剂
历史
最早固體火箭推進劑是在13世紀中國宋朝發展起來的。1232年,宋人在開封圍城戰中首次使用火藥。
1950 年代和 60 年代,美國研究人員開發了高氯酸銨複合推進劑(APCP)。這種混合物通常是 69-70% 精細研磨的高氯酸銨(一種氧化劑),結合 16-20% 細鋁粉(一種燃料),混合在 11-14%聚丁二烯丙烯腈(PBAN) 或羥基封端的基料中聚丁二烯(聚丁二烯橡膠燃料)。混合物形成為稠化液體,然後澆鑄成正確的形狀並固化成堅固但柔韌的承重固體。
在 1970 年代和 1980 年代,美國完全改用固體燃料洲際彈道導彈:LGM-30 Minuteman和LG-118A Peacekeeper (MX)。
1980 年代和 1990 年代,蘇聯/俄羅斯還部署了固體燃料洲際彈道導彈(RT-23、RT-2PM和RT-2UTTH),但保留了兩種液體燃料洲際彈道導彈(R-36和UR-100N)。
描述
固體推進劑有兩種主要類型。“複合材料”由大多固體氧化劑的顆粒,諸如混合物的硝酸銨,二硝酰胺銨,高氯酸銨,或硝酸鉀在聚合物結合劑,用高能燃料化合物(實例薄片或粉末:RDX,HMX,鋁、鈹)。也可以添加增塑劑、穩定劑和/或燃燒速度調節劑(氧化鐵、氧化銅)。
單、雙或三基(取決於主要成分的數量)是一到三種主要成分的均勻混合物。這些主要成分必須包括燃料和氧化劑,通常還包括粘合劑和增塑劑。所有成分在宏觀上無法區分,並且通常以液體形式混合併在單個批次中固化。成分通常可以有多種作用。例如,RDX 既是燃料又是氧化劑,而硝基纖維素是燃料、氧化劑和結構聚合物。
更複雜的分類是,有許多推進劑包含雙基和復合推進劑的元素,它們通常包含一些均勻混合到粘合劑中的高能添加劑。在火藥(一種沒有聚合物粘合劑的壓制複合材料)的情況下,燃料是木炭,氧化劑是硝酸鉀,硫作為反應催化劑,同時也被消耗以形成各種反應產物,如硫化鉀。
最新的基於CL-20(HNIW)的硝胺固體推進劑可以與NTO/UDMH可儲存液體推進劑的性能相匹配,但不能節流或重新啟動。
优点
固態火箭推進劑優點有 重量較輕 對外界震盪及碰撞之危險性較小 燃料保存年限較液態燃料久 也不須多餘的管線或加壓設備
缺点
固態火箭推進劑的缺點有 工作時間短 一經燃燒即無法隨便停止,無法控制燃燒時間。
液体推进剂
优点
缺点
历史
现状
气体推进剂
气体推进剂通常涉及某种形式的压缩气体。然而,由于密度低,且压力容器重量高,目前很少使用气体推进剂,但有时也用于姿態噴嘴,特别是惰性推进剂。
GOX被用来作为Buran program的轨道操纵系统的推进剂之一。
混合型推进剂
惰性推进剂
一些火箭设计的推进剂来自非化学能源或甚至是来自外部的能源。例如水火箭使用压缩气体,一般是空气,迫使水从火箭喷出。
太阳能火箭和核能火箭通常建议使用液氢以达到600-900秒Isp(比冲),或在某些情况下,用水蒸汽达到190秒Isp。
此外对于低性能要求的情况,如姿态喷射器,也有用惰性气体氮气的。
混合比例
给出的化学推进剂理论排空速率是每单位质量推进剂(具体能量)能量释放的函数。未燃尽的燃料或氧化剂会影响具体能源。令人惊讶的是,大多数火箭载富燃料运行。
推进剂密度
虽然液氢有很高的Isp,其密度低是一个重要的缺点:每公斤氢占地的体积是密集燃料(如煤油)7倍多。 这不仅对贮槽设施不利,而且油箱的管道和燃油泵,需要原来体积和重量的7倍。(引擎的oxidiser一侧和渣当然不受影响。)这使得航天器的干质量要高得多,所以使用液氢比起预想的不是这么有效。事实上,一些致密碳氢化合物/液氧推进剂组合具有较高的性能同时,干重的不利也包括在内。
由于较低的Isp, 密集推进剂运载火箭,具有更高的起飞质量,但这并不意味着一个成比例的高成本,相反,航天器很可能最终更便宜。液氢生产和储存是相当昂贵的,并在航天器的设计和制造带来许多实际困难。
由于较高的整体重量,密集燃料运载火箭必然要求更高的起飞推力,但它携带推力的能力要一直持续到达轨道。这一点,再加上更好的推力/重量比,这意味着密集燃料的航天器达到轨道早些时候,从而尽量减少重力阻力造成的损失。因此,这些航天器的有效delta-v要求减少了。
但是,液氢给予明确的优势,整体重量需要最小;例如,土星V飞行器在它的末级使用液氢;降低了重量,这意味着使用密集燃料的第一级可成比例的缩小,节省不少钱。
引用
其他
外部链接
- NASA page on propellants
- Rocket Propellants (from Rocket & Space Technology)
- History of solid rocket fuels (页面存档备份,存于互联网档案馆)
- Detailed list of rocket fuels, practical and theoretical (页面存档备份,存于互联网档案馆)
- Rocket Man (页面存档备份,存于互联网档案馆) Short essay by S. Abbas Raza about development of solid rocket fuel at 3 Quarks Daily[永久失效連結]