風能
此條目目前正依照其他维基百科上的内容进行翻译。 (2006年6月) |
風能資源因風力做功而提供給人類的一種可利用的能量。風具有的動能稱風能。風速越高,動能越大。人們可以用風車把風的動能轉化為旋轉的動作去推動發電機,以產生電力。方法是透過傳動軸,將轉子(由以空氣動力推動的扇葉組成)的旋轉動力傳送至發電機。到2008年為止,全世界以風力產生的電力約有 94.1 百萬千瓦,供應的電力已超過全世界用量的1%。風能雖然對大多數國家而言還不是主要的能源,但在1999年到2005年之間已經成長了四倍以上。
多數現代風力產生以電的形式由轉換渦輪刀片的自轉成電流通過一臺電子發電器。在風車(更舊的技術裡) 風能量使用轉動機械機械完成物理工作, 像擊碎五穀或抽水。
風力被使用在大規模風農場為全國電子柵格並且在小各自的渦輪為提供電在被隔絕的地點。
風能量是豐富, 無盡的, 廣泛分佈, 乾淨, 和緩和溫室效應。 我們把地球表面一定範圍內。經過長期測量,調查與統計得出的平均風能密度的概況稱該範圍內能利用的依據,通常以能密度線標示在地圖上。
人類利用風能的歷史可以追溯到西元前,但數千年來,風能技術發展緩慢,沒有引起人們足夠的重視。但自1973年 世界石油危機以來,在常規能源告急和全球生態環境惡化的雙重壓力下,風能作為新能源的一部分才重新有了長足的發展。風能作為一種無污染和可再生的新能源有著巨大的發展潛力,特別是對沿海島嶼,交通不便的邊遠山區,地廣人稀的草原牧場,以及遠離電網和近期內電網還難以達到的農村、邊疆,作為解決生產和生活能源的一種可靠途徑,有著十分重要的意義。即使在發達國家,風能作為一種高效清潔的新能源也日益受到重視,比如:美國能源部就曾經調查過,單是德克薩斯州和南達科他州兩州的風能密度就足以供應全美國的用電量。
經濟性
近年, 大致上來說,利用風來產生電力所需的成本已經降低許多, 即使不含其他外在的成本,在許多適當地點使用風力發電的成本已低於燃油的內然機發電了。[1]自2004 年起,風力發電更成為在所有新式能源中已是最便宜的了。風力發電在2002 年時約25%,現在則是38%的比例快速成長。2003年美國的風力發電成長就超過了所有發電機的平均成長率。在2005 年風力能源的成本已降到1990 年代時的五分之一,而且隨著大瓦數發電機的使用,下降趨勢還會持續。.[2][3] 風能發電正成長,幅度高逹 38%,[4] 超越2002年時的 25%。在美國,2003年以年增率來看,風力是各種發電方式之中成長最快的。[5] 在2005年,風力發電的成本己降到1990年代後期的五分一,而隨著大型百萬瓦等級的風力轉子進入量產階段,估計成本還會持續下降。[6]
風的能量
估计地球吸收的太阳能有1%到3%转化为风能,总量相当于地球上所有植物通过光合作用吸收太阳能转化为化学能的50到100倍。 上了高空就會發現風的能量,那兒有時速超過160公里 (100 英哩160 km/h 100 mph)的強風。這些風的能量最後因和地表及大氣間的摩擦力而以各種熱能方式釋放。
風的成因:因太陽照射極地和赤道的不均勻使得地表的不受熱;地表溫的速度較海面快;大氣中同溫層如同天花板的效應加速了氣體的對流;季節/的變化;科氏效應;月亮的反射比率,形成了風。
風能可以通過風車來提取。當風吹動風輪時,風力帶動風輪繞軸旋轉,使得風能轉化爲機械能。而風能轉化量直接與空氣密度、風輪掃過的面積和風速的平方成正比。The mass flow of air that travels through the swept area of a wind turbine varies with the wind speed and air density. As an example, on a cool 15°C (59°F) day at sea level, air density is about 1.22 kilograms per cubic metre (it gets less dense with higher humidity). An 8 m/s breeze blowing through a 100 meter diameter rotor would move about 1,000,000,000 kilograms of air per second through the swept area.
The kinetic energy of a given mass varies with the square of its velocity. Because the mass flow increases linearly with the wind speed, the wind energy available to a wind turbine increases as the cube of the wind speed. The power of the example breeze above through the example rotor would be about 2.5 megawatts.
As the wind turbine extracts energy , the air is slowed down, which causes it to spread out and diverts it around the wind turbine to some extent. A German physicist, Albert Betz, determined in 1919 that a wind turbine can extract at most 59% of the energy that would otherwise flow through the turbine's cross section. The Betz limit applies regardless of the design of the turbine. More recent work by a theoretical limit of about 30% for propeller-type turbines.[7] Actual efficiencies range from 10% to 20% for propeller-type turbines, and are as high as 35% for three-dimensional vertical-axis turbines like Darrieus or Gorlov turbines.
Windiness varies, and an average value for a given location does not alone indicate the amount of energy a wind turbine could produce there. To assess the climatology of wind speeds at a particular location, a probability distribution function is often fit to the observed data. Different locations will have different wind speed distributions. The distribution model most frequently used to model wind speed climatology is a two-parameter Weibull distribution because it is able to conform to a wide variety of distribution shapes, from gaussian to exponential. The Rayleigh model, an example of which is plotted to the right against an actual measured dataset, is a specific form of the Weibull function in which the shape parameter equals 2, and very closely mirrors the actual distribution of hourly wind speeds at many locations.
Because so much power is generated by higher windspeed, much of the average power available to a windmill comes in short bursts. The 2002 Lee Ranch sample is telling: half of the energy available arrived in just 15% of the operating time. The consequence of this is that wind energy is not dispatchable as for fuel-fired power plants; additional output cannot be supplied in response to load demand.
Since wind speed is not constant, a wind generator's annual energy production is never as much as its nameplate rating multiplied by the total hours in a year. The ratio of actual productivity in a year to this theoretical maximum is called the capacity factor. A well-sited wind generator will have a capacity factor of as much as 35%. When comparing the size of wind turbine plants to fueled power plants, it is important to note that 1000 kW of wind-turbine potential power would be expected to produce as much energy in a year as approximately 350 kW. Though the short-term output of a wind-plant is not completely predictable, the annual output of energy tends to vary only a few percent points between years.
當儲藏,如此的關於〔〔用唧筒抽水-儲藏水力電氣|用唧筒抽水水力電氣的儲藏〕〕, 或其他形式的世代被用來 " 塑造 " 風力量 (藉著保證持續的遞送可信度),商業的遞送代表大約 25% 的費用增加,屈從的有活力的商業表現。
風力的分級
風進入風力量密度的七個班級之內在美國區域中映射,這在區域中提供風力量資源的品質指示。
每個班級是多種的力量密度,所以評價當做班級 4 的一個區域,舉例來說,將會在地面上面的 10 m 有來自 200 到 250 W/m 的平均的力量密度。 通常,風力量的經濟發展為在被評價班級 3 的區域中發生或比較高的。
風能應用
風能優點
- 風能為乾淨的能量來源。
- 風能設施日趨進步,大量生產降低成本,成本已低於內燃機。
- 風能設施多為立體化設施,可保護陸地和生態。
風能缺點
- 風力發電在生態上的問題是可能干擾鳥類,目前的解決方案是離岸發電,離岸發電也可以增加效率。
- 在一些地區、風力發電的經濟性不足,例如台灣在電力需求較高的夏季及白日、是風力較小的時間。
注释
- ^ Mitchell, Chris. Price of Wind-Generated Electricity Plummeting. March 23, 2006 [2006-04-21].
- ^ Chakrabarty, Gargi. Powering up. Rocky Mountain News. March 27, 2004 [2004-04-05]. (Internet Archive version)
- ^ E-Letter responses to: The Real Cost of Wind Energy. Science. [2006-04-21].
- ^ Alternate Power: A Change Is In The Wind. Business Week. July 4, 2005 [2006-04-21].
- ^ Renewable Energy Trends 2003 (PDF). DOE/EIA. July 2004 [2006-04-21].
- ^ Helming, Troy. Uncle Sam's New Year's Resolution. February 2, 2004 [2006-04-21]. 已忽略未知参数
|publsiher=
(建议使用|publisher=
) (帮助) - ^ Gorban, Alexander N. Limits of the Turbine Efficiency for Free Fluid Flow (PDF). Journal of Energy Resources Technology. 2001, 123: 311–317 [2006-04-21]. 已忽略未知参数
|month=
(建议使用|date=
) (帮助)
这是一篇關於大自然的小作品。您可以通过编辑或修订扩充其内容。 |