跳转到内容

亚历山大对偶

维基百科,自由的百科全书

这是本页的一个历史版本,由赭青邃留言 | 贡献2021年10月14日 (四) 08:16 (通过翻译页面“Alexander duality”创建)编辑。这可能和当前版本存在着巨大的差异。

(差异) ←上一修订 | 最后版本 (差异) | 下一修订→ (差异)

数学中亚历山大对偶是指由 J.W. Alexander于1915年的研究中所发现一种对偶理论。它在随后由Pavel AlexandrovLev Pontryagin等人做了进一步发展。

对于欧氏空间球面或其他的某些流形的一个子空间 ,亚历山大对偶可以用于求 的同调群。亚历山大对偶是Spanier-Whitehead对偶的一种推广。

定理(亚历山大对偶)

考虑 n 维球面 的一个子空间,若其局部可缩,则有:

其中 代表空间 约化同调群,同样, 代表空间 维约化上同调群