鿫
鿫(;拼音:ào,注音:ㄠˋ,粤拼:ou3,音同「奥、澳」;英語:Oganesson),是一種放射性人工合成化學元素,其化學符號为Og,原子序數为118。在元素週期表上,鿫位於p區,是第7週期的最後一個元素。2002年,一個俄美合作的科學家團隊在位於俄羅斯杜布納的聯合核研究所首次合成鿫。國際純化學和應用化學聯合會(IUPAC)及國際純粹與應用物理學聯合會(IUPAP)所組成的聯合工作小組在2015年12月確認此項發現。為肯定核物理學家尤里·奧加涅相在超重元素合成工作上的重大貢獻[14],IUPAC於2016年11月28日正式將此元素命名為「Oganesson」。[15][16]
鿫是原子序和原子量最高的已知元素。具有極高的放射性,極不穩定。自2005年起,科學家只成功合成五個(亦可能為六個)鿫-294原子。[17]正因為如此,科學家很難通過實驗來判斷其性質以及可能存在的化合物。不過,科學家仍然能夠通過理論計算做出不少的預測,其中包括一些出人意料的性質。例如,18族元素的其他元素均為反應性低的惰性氣體,但同族的鿫卻可能有非常高的反應性。[1]科學家曾經認為鿫在標準狀況下是一種氣體,但因相對論效應,鿫在標準狀況下應該是一種固體。[1]
歷史
早期推測
在氦、氖、氩、氪、氙和氡之后的第七种稀有气体存在的猜测在稀有气体族被发现时不久就产生了。丹麦化学家Hans Peter Jørgen Julius Thomsen在1895年4月,氩发现后的第二年表示有一系列和氩类似的惰性气体会连接卤素和碱金属,而他预测和钍、铀同一周期的那个稀有气体(也就是今天的鿫)的原子量为 292, 接近于 294 ,第一种且是唯一一种确认了的鿫同位素。[18] 最早猜測118號元素有可能存在的,是丹麥物理學家尼爾斯·玻爾。他在1922年寫道,這一元素在元素週期表上應位於氡以下,成為第七種惰性氣體。[19]阿里斯蒂德·馮·格羅塞在1965年發表的論文中預測了118號元素的性質。人工合成元素的方法在1922年還未被研發出來,同樣,在1965年還沒有出現穩定島這一理論概念,因此這兩項是具有先見之明的理論預測。從玻爾預測至鿫終於被成功合成,經過了八十年。不過,鿫的化學性質是否遵循同族元素的規律,仍有待揭曉。[8]
未經證實的發現
1998年末,波蘭物理學家羅伯特·斯莫蘭楚克發表聚合原子核來合成超重原子的所需計算,其中也包括鿫。他的計算顯示,在嚴格控制的環境下聚合鉛和氪,就能製成鿫,反應的發生機率(截面)和此前合成𨭎所用的鉛鉻聚合反應相當。然而,也有理論預測顯示,隨著所產生元素的原子序的提高,利用鉛或鉍的聚變反應截面會指數下降,這和斯莫蘭楚克的計算相悖。[20]
1999年,勞倫斯伯克利國家實驗室的研究人員利用這些計算,宣佈製成鉝和鿫,並將發現發表於《物理評論快報》。[21]不久後,此項發現又登上《科學》。[22]研究團隊宣稱成功進行以下核反應:
- 86
36Kr
+ 208
82Pb
→ 293
118Og
+
n
.
翌年,由於其他的實驗室及勞倫斯伯克利國家實驗室本身都未能重複這些結果,研究團隊因此撤回這項發現。[23]2002年6月,實驗室主任宣佈原先兩個元素的發現結果,是建立在第一作者維克托・尼諾夫所假造的數據上的。[24][25]
新的實驗結果和理論計算都證實,隨著所產生核素的原子序的提高,以鉛或鉍為目標體的聚變反應截面的確會指數下降。[26]
發現
2002年,一個由美國和俄羅斯科學家所組成的團隊在位於俄羅斯杜布納的聯合核研究所首次真正探測到鿫原子的衰變。團隊由亞美尼亞裔俄籍核物理學家尤里·奧加涅相領導,成員包括來自美國加州勞倫斯利福摩爾國家實驗室的科學家。[27]團隊並沒有即時公佈此項發現,因為294Og的衰變能量與212mPo吻合,而後者是超重元素合成過程中聚變反應的常見雜質。要直到2005年再一次實驗證實之後,團隊才正式宣佈發現新元素。[28]研究人員在2006年10月9日宣佈[11]間接地探測到一共三個(可能為四個)鿫-294原子核:包括2002年探測到的一個(或兩個),[27]以及2005年探測到的另外兩個。合成反應為:[29][30][31][32][33]
- 249
98Cf
+ 48
20Ca
→ 294
118Og
+ 3
n
.
2011年,國際純化學和應用化學聯合會(IUPAC)在評估過杜布納和利福摩爾合作團隊2006年的研究結果後宣佈:「觀測到的三次Z = 118同位素衰變事件有比較好的內部冗餘,但這些事件都沒有以已知原子核作為基礎,所以不滿足正式發現的條件。」[34]
由於核聚變反應的發生概率很低(聚變截面為~0.3–0.6 pb,即×10−41 m2),所以實驗一共花時四個月,在向 (3–6)鐦目標體發射一共×1019個 2.5鈣離子之後,才首次探測到與鿫成功合成相符的事件。[35]該事件隨機發生的可能性估計小於100,000分之1,所以研究人員很有把握這並不是誤測。[36]
實驗共觀測到三個鿫-294原子經α衰變成為鉝-290,也有可能觀測到一個鿫原子發生自發裂變。由於只觀測到三個原子的衰變,因此計算出來的半衰期有着很大的不確定性:+1.07
−0.31 ms。 0.89[11]α衰變的反應式為:
- 294
118Og
→ 290
116Lv
+ 4
2He
為了確定產生的是294
Og,科學家再用48
Ca離子束撞擊245
Cm目標體,製成290
Lv原子核:
- 245
96Cm
+ 48
20Ca
→ 290
116Lv
+ 3
n
然後比較290
Lv和294
Og的衰變鏈是否吻合。[11]290
Lv原子核極不穩定,14毫秒後便衰變成286
Fl,再經自發裂變或α衰變成為282
Cn,最後發生自發裂變。[11]
根據量子穿隧模型所做的預測,294
Og的α衰變半衰期為+0.23
−0.18 ms, 0.66[37]實驗Q值於2004年發表。[38]理論Q值比實驗Q值稍低。[39]
證實
2011年,位於德國達姆施塔特的亥姆霍茲重離子研究中心在利用248
Cm+54
Cr反應試圖合成120號元素Ubn時,可能觀測到一個295
Og原子。然而實驗數據的不確定性較大,因此無法確切判斷所觀測到的是299120和295
Og的衰變鏈。數據顯示,295
Og的半衰期為181毫秒,比294
Og的0.7毫秒長得多。[13]
2015年12月,國際純化學和應用化學聯合會(IUPAC)及國際純粹與應用物理學聯合會(IUPAP)所組成的聯合工作小組承認118號元素的確實發現,並肯定發現者為杜布納和利福摩爾合作團隊。[40]此次能夠承認發現的原因包括,294
Og和286
Fl衰變產物的性質在2009年和2010年得到勞倫斯伯克利國家實驗室證實,杜布納團隊又於2012年再次觀測到294
Og的衰變鏈,且衰變參數與先前所測量的相符。聯合核研究所的那項研究原本是為了通過249Bk(48Ca,3n)反應合成294
Ts,但因為249
Bk的半衰期非常短,目標體有一大部分已衰變為249
Cf,合成反應因此產生出鿫,而非鿬。[41]
為了合成295
Og和296
Og這兩個更重的同位素,杜布納團隊又在2015年至2016年進行類似的實驗,以48
Ca作為發射體,並以249
Cf、250
Cf和251
Cf同位素的混合物為目標體。實驗共利用兩個離子束能量:252 MeV和258 MeV。用較低能量束時,只探測到一個原子,其衰變鏈和先前已知的294
Og相符(即最終衰變至286
Fl,然後自發裂變);用較高能量束時,並未觀測到任何原子。[42]
命名
德米特里·門捷列夫為有待命名或尚未發現的元素發明一套命名法,根據這套命名法,鿫應稱為「eka-氡」(1960年代之前則稱為「eka-emanation」,emanation是氡的舊稱)。[10]1979年,IUPAC訂下一套元素系統命名法,118號元素應稱為「ununoctium」,化學符號為「Uuo」。[43]IUPAC建議在元素經證實發現之前,應該以此名稱代替。[44]儘管各級化學教科書都廣泛使用著IUPAC的命名,但行內的科學家卻一般稱之為「118號元素」,化學符號為「E118」、「(118)」或「118」。[2]
在2001年研究結果被撤回之前,勞倫斯伯克利國家實驗室的研究人員曾建議,以團隊的領導成員阿伯特·吉奧索命名新元素為「ghiorsium」(符號Gh)。[45]
俄羅斯科學家最早在2006年宣佈合成118號元素。根據IUPAC建議,新元素的命名權屬於其最早發現者。[46]聯合核研究所主任曾經在2007年表示,研究團隊正考慮兩個名字:以杜布納的研究實驗室創立人格奧爾基·弗廖羅夫命名為「flyorium」(現成為114號元素鈇的名稱,flerovium),及以研究所所在地莫斯科州命名為「moskovium」(現成為115元素鏌的名稱,moscovium)。[47]他也認為,雖然此項發現是俄美團隊合作的成果(目標體元素鐦是由美國團隊提供),但118號元素名正言順地應以俄羅斯的人物或地點命名,因為聯合核研究所的弗廖羅夫核反應實驗室是世界上唯一一座能取得這種成果的設施。[48]
除氦(helium)以外,稀有氣體的名稱均以「-on」結尾:氖(neon)、氬(argon)、氪(krypton)、氙(xenon)和氡(radon)。在鿫發現當時,IUPAC規定所有新元素名稱都必須以「-ium」結尾,一般以「-ine」結尾的鹵素和一般以「-on」結尾的稀有氣體元素也不例外。[49]做臨時代替之用的系統命名「ununoctium」就符合這項規定。不過,IUPAC在2016年又公佈了新的命名建議:新的18族元素,無論性質是否屬於稀有氣體,其名稱都要以「-on」結尾。[50]
2016年6月,IUPAC宣佈118號元素的發現者考慮把它命名為「oganesson」(符號Og),以肯定亞美尼亞裔俄籍核物理學家尤里·奧加涅相在超重元素研究上的重大貢獻。奧加涅相投身核物理研究六十年,106號到118號元素就是直接利用他和他的團隊所研發的方法來合成的。[51]2016年11月28日,「oganesson」成為118號元素的正式名稱。[14]奧加涅相事後對新元素以他命名表達以下的感想:[52]
這對我來說是一項榮譽。118號元素是由俄羅斯聯合核研究所以及美國勞倫斯利福摩爾國家實驗室的科學家們發現的,oganesson這個名字也是我的同事們所提出的。我的子孫都已在美國定居多年,但我的女兒給我寫信,說她在聽聞這個消息之後,一宿未眠,因為她一直在哭。[52]
— 尤里·奧加涅相
鏌、鿬和鿫的命名典禮在2017年3月2日莫斯科俄羅斯科學院舉行。[53]
中文命名
2017年1月15日,中華人民共和國全国科学技术名词审定委员会联合国家语言文字工作委员会组织化学、物理学、语言学界专家召开113号、115号、117号、118号元素中文定名会,將此元素命名為「鿫」(读音同「奥」)。[54][55]2017年4月5日,中華民國國家教育研究院的化學名詞審譯委員會審譯修正通過之「化學元素一覽表」將此元素命名為「鿫」,音同「澳」。[56]2018年6月5日,「鿫」字被正式加入統一碼11.0版本中,碼位為U+9FEB。
性質
原子核穩定性與同位素
從96號元素鋦開始,原子序越高,原子核的穩定性越低。鋦以後所有元素的半衰期都比鋦短四個數量級。原子序超過101(鍆)的所有同位素都會發生放射性衰變,半衰期都在30個小時以下。原子序超過82(鉛)的元素均沒有穩定的同位素。[57]這是因為原子核中,質子和質子之間的庫侖相斥力隨著質子數量的上升而加強,以致強核力無法再避免原子核發生自發裂變。計算顯示,假如不考慮其他增加穩定性的因素,質子數超過104(鑪)的所有元素都不可能存在。[58]然而,科學家在1960年代提出,當質子數和中子數分別在114和184附近時,核殼層處於滿充、閉合狀態,原子核的穩定性應獲得增強。這就是所謂的「穩定島」,島上核素的半衰期理論上可以達到數千年甚至數百萬年。人工合成實驗固然還沒有達到穩定島範圍內的同位素,但單從包含鿫在內的超重元素存在的事實,就足以證明增強穩定性的效應是存在的。整體趨勢是,已知超重核素的壽命的確隨著靠近穩定島區域而指數上升。[59][60]具有放射性,半衰期不到一毫秒,但這個數值已經比一些預測值高。[37][61]這幾點都是穩定島存在的間接證據。[62]
根據量子穿隧模型計算,預計存在若干個富含中子,半衰期接近1 ms的鿫同位素。[63][64]
理論計算顯示,鿫的一些同位素可能比已知的294
Og更為穩定,這包括293
Og、295
Og、296
Og、297
Og、298
Og、300
Og和302
Og。其中297
Og能產生長壽原子核的可能性最高,[37][65]從而很可能成為未來鿫合成研究的目標方向。313
Og附近一些中子數高得多的同位素也有可能有較長的壽命。[66]這些更重、更穩定的同位素對研究鿫的化學性質有很大的幫助,所以位於杜布納的科學團隊計劃在2017年下半年進行一系列實驗,以249
Cf、250
Cf和251
Cf的混合物作為目標體,並以48
Ca為發射體,目標是合成295
Og和296
Og這兩個新的同位素。聯合核研究所計劃在2020年重複此項實驗,產生297
Og。同一條反應也有可能會生成293
Og及其子同位素289
Lv。聯合核研究所和日本理化學研究所計劃在2017年至2018年利用248
Cm和50
Ti的聚變反應來合成295
Og和296
Og。[42][67][68]
計算出的原子和物理性質
鿫屬於18族元素,不含價電子。同族的其他元素統稱惰性氣體,對大部分常見的化學反應(如燃燒反應等)呈惰性。這是因為這些元素的最外電子殼層由八個電子充滿,參與化學反應的價電子被緊緊束縛住,使原子處於十分穩定的最低能量組態。[69]同樣,鿫的最外電子殼層相信也是閉合的,價電子排佈為7s27p6。[1]
有科學家推測,鿫的物理和化學性質和同族其他元素相近,特別是和週期表上位於它以上的氡類似。[70]單從元素週期規律推斷,鿫的反應性會比氡稍高。然而,理論計算卻指出,鿫的反應性會比氡高得多。[6]除此之外,鿫甚至有可能比鈇和鎶更加活躍,後二者在週期表上位於反應性更高的鉛和汞之下。鿫反應性之所以會有大大提升,是因為其最後一個充滿的7p亞電子殼層從能量考量上穩定性降低,且亞殼層有徑向擴張的現象。更準確地說,7p電子和惰性7s電子之間強大的自旋-軌道作用使得價電子殼層到了鈇就已閉合,鿫的閉合殼層的穩定性故此會大大降低。[1]計算還顯示,和其他惰性氣體不同,鿫在結合一個電子時會釋放能量,也就是說,它的電子親和能為正數。[71][72]這是因為在相對論效應下,8s能級的穩定性會提高,7p3/2能級的穩定性則會降低。[73]根據預測,鎶和鈇沒有電子親和性。[74][75]但另一方面,量子電動力學效應卻會大大降低這種親和性。這意味著,此類效應所帶來的修正項對超重元素的性質有很大的影響。[71]
鿫預計會有很強的極化性,幾乎是氡的兩倍。根據惰性氣體的趨勢推算,鿫的沸點在320和380 K之間,[1]比先前估算的263 K[76]和247 K高得多。[77]儘管這些計算的不確定性很大,但足以斷定,鿫在標準情況下呈氣態的可能性很低。[1]而且,其他惰性氣體的液態溫度範圍較窄,只有2至9 K,所以鿫在標準情況下最有可能是固體。假如鿫在標準情況下的確是氣體,就算是單原子氣體,它也會是標準情況下密度最高的氣態物質之一。
由於極化性極高,所以鿫的電離能會異乎尋常的低(和鉛相近,[5]且比鈇低得多[78]),而且具有標準凝聚態。[1]相對論效應對鿫的原子核和電子雲結構都有較強的影響:鿫的7p軌域在自旋-軌道效應下有很強的分裂,所以價電子和核心電子亞殼層會「散開」成為均勻的電子費米氣體,這和相對論效應較弱的氡和氙不同。在核子(特別是中子)方面也有類似的情況。這種現象在中子殼層閉合的302
Og原子核開始出現,並在殼層閉合,尚未發現的472164超重原子核(含164個質子,308個中子)尤為突出。[79]
預測存在的化合物
目前唯一一種經證實存在的鿫同位素294
Og半衰期太短,其化學性質無法通過實驗直接探究。因此,科學家至今還沒有合成任何鿫化合物。[28]不過,自1964年開始,科學家就對鿫的化合物做過不少的理論計算。[10]他們預測,如果電離能足夠高的話,鿫就會很難氧化,所以它最常見的氧化態就會和其他惰性氣體一樣為零。[80]但是,也有科學家發表過與之相悖的理論預測。[8]
計算顯示,雙原子分子Og
2的鍵合作用強度與Hg
2相當,鍵離解能為6 kJ/mol,大約為Rn
2的四倍。[1]出乎意料的是,計算出的鍵長比Rn
2短0.16 Å,意味著鿫原子之間有著很強的鍵合作用。[1]另一方面,OgH+的鍵離解能(即鿫的質子親和能)則比RnH+低。[1]
根據預測,鿫和氫之間的作用力非常弱,可以視為純粹的范德華力,而不是真正的化學鍵。不過,鿫會和高電負性元素形成化學鍵,所產生的化合物預計比鎶或鈇所形成的化合物更穩定。[5]+2和+4氧化態預計可以在OgF
2和OgF
4中穩定存在。[81]因為7p1/2亞殼層被緊緊束縛,所以+6態的穩定性會相對較低。[8]這個現象,和鿫反應性比正常高的現象,都源自同一個原理。例如,鿫和F
2結合形成OgF
2時,會釋放106 kcal/mol的能量,其中46 kcal/mol就來自自旋-軌道作用。以相似的分子RnF
2做類比,它形成時所釋放的49 kcal/mol能量之中,有10 kcal/mol出自自旋-軌道作用。[5]該作用也提高了OgF
4分子四面體形Td構型的穩定性,這有別於XeF
4的平面四方D4h構型(估計也是RnF
4的分子構型)。[81]鿫氟鍵更有可能屬於離子鍵,而非共價鍵,所以鿫氟化物都不具揮發性。[6][82]根據預測,由於鿫有很高的電正性,所以OgF
2屬於半離子分子。[83]同樣因為電正性,鿫能夠和氯成鍵,[6]這和其他的惰性氣體有所不同(其實氙和氡有可能也可以和氯成鍵)。[84][85]
參見
參考資料
- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Nash, Clinton S. Atomic and Molecular Properties of Elements 112, 114, and 118. The Journal of Physical Chemistry A. 2005-04-XX, 109 (15): 3493–3500. Bibcode:2005JPCA..109.3493N. ISSN 1089-5639. PMID 16833687. doi:10.1021/jp050736o (英语).
- ^ 2.0 2.1 2.2 2.3 Morss, Lester R; Edelstein, Norman M; Fuger, J; Katz, Joseph J. The chemistry of the actinide and transactinide elements.. Dordrecht: Springer. 2006. ISBN 978-1-4020-3598-2. OCLC 262685616 (英语).
- ^ Bonchev, D.; Kamenska, Verginia. Predicting the properties of the 113-120 transactinide elements. The Journal of Physical Chemistry. 1981-04-XX, 85 (9): 1177–1186. ISSN 0022-3654. doi:10.1021/j150609a021 (英语).
- ^ 4.0 4.1 4.2 Eichler, R.; Eichler, B., Thermochemical Properties of the Elements Rn, 112, 114, and 118 (PDF), Paul Scherrer Institut, [2010-10-23], (原始内容 (PDF)存档于2011-07-07)
- ^ 5.0 5.1 5.2 5.3 Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup. Spin–orbit effects on the transactinide p -block element monohydrides MH (M=element 113–118). The Journal of Chemical Physics. 2000-02-08, 112 (6): 2684–2691. Bibcode:2000JChPh.112.2684H. ISSN 0021-9606. doi:10.1063/1.480842 (英语).
- ^ 6.0 6.1 6.2 6.3 6.4 Kaldor, U.; Wilson, Stephen. Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer Science & Business Media. 2003-11-30: 105. ISBN 978-1-4020-1371-3 (英语).
- ^ Pershina, Valeria. Publisher's Erratum to: Theoretical Chemistry of the Heaviest Elements. Schädel, Matthias (编). The Chemistry of Superheavy Elements. Berlin, Heidelberg: Springer. 2014: E1–E3. ISBN 978-3-642-37466-1. doi:10.1007/978-3-642-37466-1_10 (英语).
- ^ 8.0 8.1 8.2 8.3 Fricke, Burkhard. Superheavy elements a prediction of their chemical and physical properties. Recent Impact of Physics on Inorganic Chemistry 21. Berlin, Heidelberg: Springer Berlin Heidelberg. 1975: 89–144. ISBN 978-3-540-07109-9. doi:10.1007/bfb0116498 (英语).
- ^ Ununoctium - Element information, properties and uses. Royal Chemical Society. [2021-04-26]. (原始内容存档于2013-01-23).
- ^ 10.0 10.1 10.2 Grosse, A.V. Some physical and chemical properties of element 118 (Eka-Em) and element 86 (Em). Journal of Inorganic and Nuclear Chemistry. 1965-03-XX, 27 (3): 509–519. doi:10.1016/0022-1902(65)80255-X (英语).
- ^ 11.0 11.1 11.2 11.3 11.4 11.5 Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A. Synthesis of the isotopes of elements 118 and 116 in the Cf 249 and Cm 245 + Ca 48 fusion reactions. Physical Review C. 2006-10-09, 74 (4): 044602. Bibcode:2006PhRvC..74d4602O. ISSN 0556-2813. doi:10.1103/PhysRevC.74.044602 (英语).
- ^ Oganessian, Yuri Ts.; Rykaczewski, Krzysztof P. A beachhead on the island of stability. Physics Today. 2015-08, 68 (8): 32–38 [2017-06-14]. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880.
- ^ 13.0 13.1 International Symposium on Exotic Nuclei; Penionžkevič, Jurij Ė; Sobolev, Yu. G. Proceedings of the International Symposium on Exotic Nuclei EXON 2016 Kazan, Kazan, Russia, 4-10 September 2016. 2017. ISBN 978-981-322-654-8. OCLC 1129825974 (英语).
- ^ 14.0 14.1 Oganessian, Yuri. Heaviest nuclei from 48 Ca-induced reactions. Journal of Physics G: Nuclear and Particle Physics. 2007-04-01, 34 (4): R165–R242. ISSN 0954-3899. doi:10.1088/0954-3899/34/4/R01.
- ^ Staff. IUPAC Announces the Names of the Elements 113, 115, 117, and 118. IUPAC. 2016-11-30 [2016-12-01]. (原始内容存档于2018-07-29).
- ^ St. Fleur, Nicholas. Four New Names Officially Added to the Periodic Table of Elements. The New York Times. 2016-12-01 [2016-12-01]. (原始内容存档于2017-08-14).
- ^ The Top 6 Physics Stories of 2006. Discover Magazine. 2007-01-07 [2008-01-18]. (原始内容存档于2007-10-12).
- ^ Kragh 2018,第6頁.
- ^ Leach, Mark R. The INTERNET Database of Periodic Tables. [2016-07-08]. (原始内容存档于2016-04-17).
- ^ Smolańczuk, Robert. Production mechanism of superheavy nuclei in cold fusion reactions. Physical Review C. 1999-05-01, 59 (5): 2634–2639. Bibcode:1999PhRvC..59.2634S. ISSN 0556-2813. doi:10.1103/PhysRevC.59.2634 (英语).
- ^ Ninov, Viktor. Observation of Superheavy Nuclei Produced in the Reaction of 86Kr with 208Pb. Physical Review Letters. 1999, 83 (6): 1104–1107. Bibcode:1999PhRvL..83.1104N. doi:10.1103/PhysRevLett.83.1104.
- ^ Service, R. F. NUCLEAR PHYSICS:Berkeley Crew Bags Element 118. Science. 1999-06-11, 284 (5421): 1751–1751. doi:10.1126/science.284.5421.1751.
- ^ Public Affairs Department. Results of element 118 experiment retracted. Berkeley Lab. 2001-07-21 [2008-01-18]. (原始内容存档于2008-01-29).
- ^ Dalton, Rex. The stars who fell to Earth. Nature. 2002-12-XX, 420 (6917): 728–729. Bibcode:2002Natur.420..728D. ISSN 0028-0836. PMID 12490902. doi:10.1038/420728a (英语).
- ^ Element 118 disappears two years after it was discovered. Physicsworld.com. [2012-04-02]. (原始内容存档于2007-10-12).
- ^ Zagrebaev, Valeriy; Karpov, Alexander; Greiner, Walter. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013-03-25, 420: 012001. ISSN 1742-6588. arXiv:1207.5700 . doi:10.1088/1742-6596/420/1/012001.
- ^ 27.0 27.1 Oganessian, Y T; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Shirokovsky, I V; Tsyganov, Y S; Mezentsev, A N; Iliev, S. Results from the First {sup 249}Cf + {sup 48}Ca Experiment (UCRL-ID-151619, 15007307): UCRL–ID–151619, 15007307. 2003-02-03. doi:10.2172/15007307 (英语).
- ^ 28.0 28.1 Moody, Ken. Synthesis of Superheavy Elements. Schädel, Matthias; Shaughnessy, Dawn (编). The Chemistry of Superheavy Elements 2nd. Springer Science & Business Media. 2013-11-30: 24–8. ISBN 9783642374661.
- ^ Livermore scientists team with Russia to discover element 118. Livermore press release. 2006-12-03 [2008-01-18]. (原始内容存档于2011-10-17).
- ^ Oganessian, Yuri. Synthesis and decay properties of superheavy elements. Pure and Applied Chemistry. 2006-01-01, 78 (5): 889–904. ISSN 1365-3075. doi:10.1351/pac200678050889.
- ^ Sanderson, Katharine. Heaviest element made - again. Nature. 2006-10-17: news061016–4. ISSN 0028-0836. doi:10.1038/news061016-4 (英语).
- ^ Schewe, P. & Stein, B. Elements 116 and 118 Are Discovered. Physics News Update. American Institute of Physics. 2006-10-17 [2008-01-18]. (原始内容存档于2012-01-01).
- ^ Weiss, R. Scientists Announce Creation of Atomic Element, the Heaviest Yet. Washington Post. 2006-10-17 [2008-01-18]. (原始内容存档于2011-08-21).
- ^ Barber, Robert C.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report). Pure and Applied Chemistry. 2011-06-01, 83 (7): 1485–1498. ISSN 1365-3075. doi:10.1351/PAC-REP-10-05-01.
- ^ Ununoctium. WebElements Periodic Table. [2007-12-09]. (原始内容存档于2008-05-09).
- ^ Jacoby, Mitch. ELEMENT 118 DETECTED, WITH CONFIDENCE: TRANSACTINIDES: Experiments yield three atoms of superheavy nuclide. Chemical & Engineering News Archive. 2006-10-23, 84 (43): 11. ISSN 0009-2347. doi:10.1021/cen-v084n043.p011 (英语).
I would say we're very confident.
- ^ 37.0 37.1 37.2 Chowdhury, P. Roy; Samanta, C.; Basu, D. N. α decay half-lives of new superheavy elements. Physical Review C. 2006-01-26, 73 (1): 014612. Bibcode:2006PhRvC..73a4612C. ISSN 0556-2813. arXiv:nucl-th/0507054 . doi:10.1103/PhysRevC.73.014612 (英语).
- ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions U 233 , 238 , Pu 242 , and Cm 248 + Ca 48. Physical Review C. 2004-12-17, 70 (6): 064609. ISSN 0556-2813. doi:10.1103/PhysRevC.70.064609 (英语).
- ^ Samanta, C.; Chowdhury, P. Roy; Basu, D.N. Predictions of alpha decay half lives of heavy and superheavy elements. Nuclear Physics A. 2007-06-XX, 789 (1-4): 142–154. Bibcode:2007NuPhA.789..142S. arXiv:nucl-th/0703086 . doi:10.1016/j.nuclphysa.2007.04.001 (英语).
- ^ Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118. IUPAC. [2015-12-30]. (原始内容存档于2015-12-31).
- ^ Karol, Paul J.; Barber, Robert C.; Sherrill, Bradley M.; Vardaci, Emanuele; Yamazaki, Toshimitsu. Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table (IUPAC Technical Report). Pure and Applied Chemistry. 2016-02-01, 88 (1-2): 155–160. ISSN 1365-3075. doi:10.1515/pac-2015-0501.
- ^ 42.0 42.1 Voinov, A. A.; Oganessian, Yu. Ts; Abdullin, F. Sh.; Brewer, N. T.; Dmitriev, S. N.; Grzywacz, R. K.; Hamilton, J. H.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Rykaczewski, K. P.; Sabelnikov, A. V.; Sagaidak, R. N.; Shriokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K. Results from the Recent Study of the 249–251Cf + 48Ca Reactions. Peninozhkevich, Yu. E.; Sobolev, Yu. G. (编). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei: 219–223. 2016. ISBN 9789813226555.
- ^ Chatt, J. Recommendations for the Naming of Elements of Atomic Numbers Greater than 100. Pure Appl. Chem. 1979, 51 (2): 381–384. doi:10.1351/pac197951020381.
- ^ Wieser, M. E. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure and Applied Chemistry. 2006-01-01, 78 (11): 2051–2066. ISSN 1365-3075. doi:10.1351/pac200678112051 (德语).
- ^ Discovery of New Elements Makes Front Page News. Berkeley Lab Research Review Summer 1999. 1999 [2008-01-18]. (原始内容存档于2016-03-31).
- ^ Koppenol, W. H. Naming of new elements(IUPAC Recommendations 2002). Pure and Applied Chemistry. 2002-01-01, 74 (5): 787–791. ISSN 1365-3075. doi:10.1351/pac200274050787.
- ^ New chemical elements discovered in Russia's Science City. 2007-02-12 [2008-02-09]. (原始内容存档于2016-05-09).
- ^ Yemel'yanova, Asya. 118-й элемент назовут по-русски (118th element will be named in Russian). vesti.ru. 2006-12-17 [2008-01-18]. (原始内容存档于2008-12-25) (俄语).
- ^ Koppenol, W. H. Naming of new elements(IUPAC Recommendations 2002). Pure and Applied Chemistry. 2002-01-01, 74 (5): 787–791. ISSN 1365-3075. doi:10.1351/pac200274050787.
- ^ Koppenol, Willem H.; Corish, John; García-Martínez, Javier; Meija, Juris; Reedijk, Jan. How to name new chemical elements (IUPAC Recommendations 2016). Pure and Applied Chemistry. 2016-04-01, 88 (4): 401–405. ISSN 1365-3075. doi:10.1515/pac-2015-0802.
- ^ What it takes to make a new element. Chemistry World. [2016-12-03]. (原始内容存档于2017-10-28).
- ^ 52.0 52.1 Gray, Richard. Mr Element 118: The only living person on the periodic table. New Scientist. 2017-04-11 [2017-04-26]. (原始内容存档于2017-04-27).
- ^ Fedorova, Vera. At the inauguration ceremony of the new elements of the Periodic table of D.I. Mendeleev. jinr.ru. Joint Institute for Nuclear Research. 2017-03-03 [2018-02-04]. (原始内容存档于2018-09-07).
- ^ 全国科技名词委联合国家语言文字工作委员会召开113号、115号、117号、118号元素中文定名会. [2017-02-16]. (原始内容存档于2017-11-06) (中文(中国大陆)).
- ^ 丁佳. 中科院等公布4个新元素中文名. 科学网. 2017-05-09 [2018-06-28]. (原始内容存档于2018-06-28) (中文(中国大陆)).
- ^ 本院化學名詞審譯委員會審譯修正通過之「化學元素一覽表」,歡迎使用並提供寶貴建議。. 國家教育研究院. 2017-04-05 [2017-04-17]. (原始内容存档于2017-04-18) (中文(臺灣)).
- ^ de Marcillac, Pierre; Coron, Noël; Dambier, Gérard; Leblanc, Jacques; Moalic, Jean-Pierre. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature. 2003-04-XX, 422 (6934): 876–878. Bibcode:2003Natur.422..876D. ISSN 0028-0836. PMID 12712201. doi:10.1038/nature01541 (英语).
- ^ Möller, Peter. Rudolph, D. , 编. The limits of the nuclear chart set by fission and alpha decay. EPJ Web of Conferences. 2016, 131: 03002. ISSN 2100-014X. doi:10.1051/epjconf/201613103002.
- ^ Considine, G. D.; Kulik, Peter H. Van Nostrand's scientific encyclopedia 9th. Wiley-Interscience. 2002. ISBN 978-0-471-33230-5. OCLC 223349096.
- ^ Oganessian, Yu Ts; Sobiczewski, A; Ter-Akopian, G M. Superheavy nuclei: from predictions to discovery. Physica Scripta. 2017-02-01, 92 (2): 023003. ISSN 0031-8949. doi:10.1088/1402-4896/aa53c1.
- ^ Oganessian, Yuri. Heaviest nuclei from 48 Ca-induced reactions. Journal of Physics G: Nuclear and Particle Physics. 2007-04-01, 34 (4): R165–R242. Bibcode:2007JPhG...34..165O. ISSN 0954-3899. doi:10.1088/0954-3899/34/4/R01.
- ^ New Element Isolated Only Briefly. The Daily Californian. 2006-10-18 [2008-01-18]. (原始内容存档于2014-08-23).
- ^ Chowdhury, P. Roy; Samanta, C.; Basu, D. N. Search for long lived heaviest nuclei beyond the valley of stability. Physical Review C. 2008-04-23, 77 (4): 044603. Bibcode:2008PhRvC..77d4603C. ISSN 0556-2813. arXiv:0802.3837 . doi:10.1103/PhysRevC.77.044603 (英语).
- ^ Chowdhury, P. Roy; Samanta, C.; Basu, D.N. Nuclear half-lives for α-radioactivity of elements with 100⩽Z⩽130. Atomic Data and Nuclear Data Tables. 2008-11-XX, 94 (6): 781–806. Bibcode:2008ADNDT..94..781C. arXiv:0802.4161 . doi:10.1016/j.adt.2008.01.003 (英语).
- ^ Royer, G.; Zbiri, K.; Bonilla, C. Entrance channels and alpha decay half-lives of the heaviest elements. Nuclear Physics A. 2004-01-XX, 730 (3-4): 355–376. doi:10.1016/j.nuclphysa.2003.11.010 (英语).
- ^ Duarte, S B; Tavares, O A P; Gonçalves, M; Rodríguez, O; Guzmán, F; Barbosa, T N; García, F; Dimarco, A. Half-life predictions for decay modes of superheavy nuclei. Journal of Physics G: Nuclear and Particle Physics. 2004-09-21, 30 (10): 1487–1494. Bibcode:2004JPhG...30.1487D. ISSN 0954-3899. doi:10.1088/0954-3899/30/10/014 (英语).
- ^ Sychev, Vladimir. Юрий Оганесян: мы хотим узнать, где кончается таблица Менделеева. RIA Novosti. 2017-02-08 [2017-03-31]. (原始内容存档于2017-04-01) (俄语).
- ^ Roberto, J. B. Actinide Targets for Super-Heavy Element Research (PDF). cyclotron.tamu.edu. Texas A & M University. 2015-03-31 [2017-04-28]. (原始内容存档 (PDF)于2016-03-10).
- ^ Bader, Richard F.W. An Introduction to the Electronic Structure of Atoms and Molecules. McMaster University. [2008-01-18]. (原始内容存档于2014-08-23).
- ^ Ununoctium (Uuo) – Chemical properties, Health and Environmental effects. Lenntech. [2008-01-18]. (原始内容存档于2008-01-16).
- ^ 71.0 71.1 Goidenko, Igor; Labzowsky, Leonti; Eliav, Ephraim; Kaldor, Uzi; Pyykkö, Pekka. QED corrections to the binding energy of the eka-radon $(Z=118)$ negative ion. Physical Review A. 2003-02-28, 67 (2): 020102. Bibcode:2003PhRvA..67b0102G. doi:10.1103/PhysRevA.67.020102.
- ^ Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Y.; Pyykkö, P. Element 118: The First Rare Gas with an Electron Affinity. Physical Review Letters. 1996, 77 (27): 5350–5352. Bibcode:1996PhRvL..77.5350E. PMID 10062781. doi:10.1103/PhysRevLett.77.5350.
- ^ Landau, Arie; Eliav, Ephraim; Ishikawa, Yasuyuki; Kaldor, Uzi. Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119). The Journal of Chemical Physics. 2001-08-08, 115 (6): 2389–2392. Bibcode:2001JChPh.115.2389L. ISSN 0021-9606. doi:10.1063/1.1386413 (英语).
- ^ Borschevsky, Anastasia; Pershina, Valeria; Kaldor, Uzi; Eliav, Ephraim. Fully relativistic ab initio studies of superheavy elements (PDF). www.kernchemie.uni-mainz.de. Johannes Gutenberg University Mainz. [2018-01-15]. (原始内容 (PDF)存档于2018-01-15).
- ^ Borschevsky, Anastasia; Pershina, Valeria; Eliav, Ephraim; Kaldor, Uzi. Electron affinity of element 114, with comparison to Sn and Pb. Chemical Physics Letters. 2009-08-27, 480 (1): 49–51. Bibcode:2009CPL...480...49B. doi:10.1016/j.cplett.2009.08.059.
- ^ Seaborg, Glenn Theodore. Modern Alchemy. World Scientific. 1994: 172. ISBN 978-981-02-1440-1.
- ^ Takahashi, N. Boiling points of the superheavy elements 117 and 118. Journal of Radioanalytical and Nuclear Chemistry. 2002, 251 (2): 299–301. doi:10.1023/A:1014880730282.
- ^ Nash, Clinton S.; Bursten, Bruce E. Spin−Orbit Effects, VSEPR Theory, and the Electronic Structures of Heavy and Superheavy Group IVA Hydrides and Group VIIIA Tetrafluorides. A Partial Role Reversal for Elements 114 and 118. The Journal of Physical Chemistry A. 1999-01-01, 103 (3): 402–410. Bibcode:1999JPCA..103..402N. ISSN 1089-5639. PMID 27676357. doi:10.1021/jp982735k.
- ^ Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit. Physical Review Letters. 2018-01-31, 120 (5): 053001. Bibcode:2018PhRvL.120e3001J. ISSN 0031-9007. PMID 29481184. arXiv:1707.08710 . doi:10.1103/PhysRevLett.120.053001 (英语).
- ^ Ununoctium: Binary Compounds. WebElements Periodic Table. [2008-01-18]. (原始内容存档于2008-05-16).
- ^ 81.0 81.1 Han, Young-Kyu; Lee, Yoon Sup. Structures of RgF n (Rg = Xe, Rn, and Element 118. n = 2, 4.) Calculated by Two-component Spin−Orbit Methods. A Spin−Orbit Induced Isomer of (118)F 4. The Journal of Physical Chemistry A. 1999-02-01, 103 (8): 1104–1108. Bibcode:1999JPCA..103.1104H. ISSN 1089-5639. doi:10.1021/jp983665k (英语).
- ^ Pitzer, Kenneth S. Fluorides of radon and element 118. Journal of the Chemical Society, Chemical Communications. 1975, (18): 760b. ISSN 0022-4936. doi:10.1039/c3975000760b (英语).
- ^ Seaborg, Glenn Theodore. transuranium element (chemical element). Encyclopædia Britannica. c. 2006 [2010-03-16]. (原始内容存档于2010-11-30).
- ^ 张青莲. 《无机化学丛书》第一卷:稀有气体、氢、碱金属. Beijing: Science Press. 1991-11: P72. ISBN 978-7-03-002238-7 (中文).
- ^ Proserpio, Davide M.; Hoffmann, Roald; Janda, Kenneth C. The xenon-chlorine conundrum: van der Waals complex or linear molecule?. Journal of the American Chemical Society. 1991-09-XX, 113 (19): 7184–7189. ISSN 0002-7863. doi:10.1021/ja00019a014 (英语).
延伸閱讀
- Scerri, Eric. The Periodic Table, Its Story and Its Significance. New York: Oxford University Press. 2007. ISBN 978-0-19-530573-9.
外部連結
- 元素鿫在洛斯阿拉莫斯国家实验室的介紹(英文)
- EnvironmentalChemistry.com —— 鿫(英文)
- 元素鿫在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素鿫在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – 鿫(英文)
- Element 118: Experiments on discovery(聯合核研究所發現者的官方網頁)
- Oganesson(页面存档备份,存于互联网档案馆)(The Periodic Table of Videos,諾丁漢大學)
- On the Claims for Discovery of Elements 110, 111, 112, 114, 116, and 118(页面存档备份,存于互联网档案馆)(IUPAC有關新元素發現的技術審核報告)