跳转到内容

新美鞭菌门

维基百科,自由的百科全书

这是本页的一个历史版本,由InternetArchiveBot留言 | 贡献2021年12月22日 (三) 21:58 (补救2个来源,并将0个来源标记为失效。) #IABot (v2.0.8.5)编辑。这可能和当前版本存在着巨大的差异。

新美鞭菌科
科学分类 编辑
界: 真菌界 Fungi
门: 新美鞭菌门 Neocallimastigomycota
纲: 新美鞭菌纲 Neocallimastigomycetes
目: 新美鞭菌目 Neocallimastigales
科: 新美鞭菌科 Neocallimastigaceae

新美鞭菌门厌氧性真菌的一,发现于食草动物消化道中。它只包括一、一、一[1],目前已知6属。

发现

新美鞭菌门的真菌为Orpin于1975年首次根据绵羊瘤胃中发现的运动细胞所描述。[3]尽管这些细胞最初被认为是鞭毛虫,现在已经证明它们是与核心壶菌有亲缘关系的真菌。在此之前,人们只知道瘤胃的微生物群落由细菌原虫组成。自发现之后,已经从50多种食草动物——包括反刍动物、非反刍哺乳动物和食草爬行动物——的消化道中分离出这类真菌。[4][5]

繁殖和生长

新美鞭菌门真菌通过游动孢子在反刍动物的胃中繁殖。游动孢子具有基体,但缺乏多数壶菌所具有的无鞭毛中心体[1]已知新美鞭菌门真菌还能利用基因水平转移制造木聚糖酶(其基因来自细菌)及各种葡聚糖酶[6]细胞核被膜有丝分裂过程中始终保持不变,亦为其特征。[1]

代谢

新美鞭菌门真菌缺乏线粒体。它们通过氢化酶体NADH氧化为NAD+,释放H2作为产物。[6]

降解多糖的能力

新美鞭菌门真菌在其宿主纤维的消化中扮演了重要角色。它们在主要摄入高含量纤维食物的动物的消化道中大量存在。[7]由这些厌氧真菌制造的多糖降解酶可以水解许多不易降解的植物聚合物,因此可以将非木质化的植物细胞壁全部降解。[8][9]这些多糖降解酶形成多蛋白质复合体,类似于细菌的纤维小体[10]

命名

新美鞭菌门的学名基于新美鞭菌属Neocallimastix)的学名,后者由古希腊语词根neo-(新)、calli-(美丽)和mastix(鞭)构成。其中,“鞭”指这类真菌具有多数鞭毛。按照分类学界传统,拉丁化的mastix一词在后接后缀时,要转化为mastig-的复合形式。[11]但是,在新美鞭菌科的学名(Neocallimastigaceae)首次发表时,被其作者不正确地拼成了“Neocallimasticaceae”,并进而导致了其他拼写错误(如“Neocallimasticales”等)。这是由于其作者错误地按照其他以-ix结尾的单词(如柳属Salix的复合形式是Salic-,因此杨柳科Salicaceae)构造了mastix的复合形式。根据《国际藻类、菌物和植物命名法规》(ICN)规则60,这个拼写错误属于可以纠正的类型。纠正后的拼写已为《菌物索引》(Index Fungorum)所采用。[12]然而,这两种拼写现在在文献中或网络上仍然并存,应予注意。

参考文献

  1. ^ 1.0 1.1 1.2 1.3 1.4 Hibbett, D.S.; et al. A higher level phylogenetic classification of the Fungi. Mycological Research. March 2007, 111 (5): 509–547. PMID 17572334. doi:10.1016/j.mycres.2007.03.004. 
  2. ^ Li, J.L.; et al. The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. II. Cladistic analysis of structural data and description of Neocallimasticales ord. nov. Can. J. Bot. 1993, 71 (3): 393–407. doi:10.1139/b93-044. 
  3. ^ Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. December 1975, 91 (2): 249–62. PMID 1462. 
  4. ^ Ljungdahl LG. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N. Y. Acad. Sci. March 2008, 1125: 308–21. PMID 18378601. doi:10.1196/annals.1419.030. 
  5. ^ Mackie RI, Rycyk M, Ruemmler RL, Aminov RI, Wikelski M. Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galápagos archipelago. Physiol. Biochem. Zool. 2004, 77 (1): 127–38. PMID 15057723. doi:10.1086/383498. 
  6. ^ 6.0 6.1 C.J. Alexopolous, Charles W. Mims, M. Blackwell, Introductory Mycology, 4th ed. (John Wiley and Sons, Hoboken NJ, 2004) ISBN 0-471-52229-5
  7. ^ Ho YW, Bar DJS. Classification of anaerobic gut fungi from herbivores withemphasis on rumen fungi from Malaysia. Mycologia. 1995, 87 (5): 655–77. JSTOR 3760810. doi:10.2307/3760810. 
  8. ^ Akin DE, Borneman WS. Role of rumen fungi in fiber degradation. J. Dairy Sci. October 1990, 73 (10): 3023–32. PMID 2178175. doi:10.3168/jds.S0022-0302(90)78989-8. 
  9. ^ Selinger LB, Forsberg CW, Cheng KJ. The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe. October 1996, 2 (5): 263–84. PMID 16887555. doi:10.1006/anae.1996.0036. 
  10. ^ Wilson CA, Wood TM. Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme .Microb. Technol. 1992, 14 (4): 258–64. doi:10.1016/0141-0229(92)90148-H. 
  11. ^ combform3.qxd 互联网档案馆存档,存档日期2007-03-15.
  12. ^ Suprafamilial Names. [2013-10-03]. (原始内容存档于2007-02-22). 

外部链接