卢曼-缅绍夫定理(英語:Looman–Menchoff theorem)是复分析中的一条定理,可用于判断复函数的解析性。该定理指出,定义在复平面上某个区域内的连续函数是解析函数,当且仅当其视作的映射时,四个偏导数处处存在且满足柯西-黎曼方程。该定理由卢曼于1923年提出,于1931年由缅绍夫给出完整证明。[1][2]
背景
定义在复平面内的区域上的复解析函数在整个定义域内满足柯西-黎曼方程:[1][2]
上述命题的部分逆命题亦成立,例如:额外假定作为实函数在区域内处处可微,或是假定的偏导数处处连续,同时满足柯西-黎曼方程,则是区域内的解析函数;其中前一个命题由爱徳华·古尔萨在1900年证明,又被称为古尔萨定理。[3]实际上,这些附加条件存在放宽的余地。[1]20世纪初,人们对放宽函数解析性的判定条件这一问题开展了大量的研究。1905年,迪米特里耶·蓬佩尤指出,古尔萨定理的附加条件可以放宽到“函数在区域内几乎处处可微”。之后,卢曼和迪米特里·缅绍夫在这一领域做出了重要的贡献。[2][3]
卢曼注意到,仅仅假定偏导数在区域内处处存在,且满足柯西-黎曼方程,并不足以保证函数在区域上的解析性——甚至不能保证函数在其上的连续性:如下定义的复变函数,在复平面上处处可求偏导,且偏导数满足柯西-黎曼方程,但它在原点处并不解析:[1]
1923年,卢曼断言只要附加函数在区域上连续的条件,就可以推出函数的解析性,从而强化了古尔萨定理。然而,卢曼当时的证明中存在一个漏洞。缅绍夫于1931年发表的证明则弥补了这一漏洞,他的证明用到了勒贝格积分和贝尔纲定理。1933年,数学家斯坦尼斯拉夫·萨克斯回顾了这一证明,并将其命名为“卢曼-缅绍夫定理”。[3][4]萨克斯对该证明评价甚高:“毫无疑问,它是现代实变函数理论在初等数学领域最优美和令人意外的应用之一”。[1]
定理的陈述和证明
设为复平面上的开集,为定义在上的连续复变函数。若偏导数、、、在上处处存在且处处满足柯西-黎曼方程,则为上的解析函数。
引理
为证明卢曼-缅绍夫定理,需要先证明如下引理:[1][4][5]
设为上的正方形,为到的映射,且在内处处可求偏导。若存在的某个非空闭集和正数,使得:
记为包含的最小矩形,则有:
其中代表集合的测度。为证明该引理,可以先考虑一维的情形。这时,为实轴上的区间,而为其内一个闭集。可以在上定义一个辅助函数,它在内取,在内取分段线性函数,并保持边界处连续。可以证明,该辅助函数在整个上利普希茨连续,因此绝对连续,几乎处处可导,且导函数可积。而的孤立点集至多可数,在非孤立点集上,辅助函数和的导数又几乎处处相等。故而:
回到引理,由于是包含闭集的最小矩形,在区间上必然存在点、,使得。对上的任何一点,都有:
其中为的边长。记中所有点纵坐标的集合为,在中的补集为。则在上的积分满足:
另一方面,,可以证明是闭集。因此,对连接和的线段使用上述一维情形的结论,可知:
将上式在上积分,并将重积分化作累次积分,可得:
注意到下式即可证明引理:
证明概要
记为中不解析的点的集合。利用反证法:假设非空,只需证明存在的一个子集,使得在其上解析,即可推出矛盾,进而说明原命题成立。
利用解析性和围道积分的关系可以证明是一个闭集。定义为的具备如下性质的子集:
由的连续性和处处可求偏导的性质分别可以推出是闭集,且。因此,由贝尔纲定理,必然至少存在一个和中开集,使得。
设是中任意一个边长小于,且交非空的正方形。可证、作为的映射,均满足引理要求的一切条件。因此,在包含的最小矩形上:
注意到、满足柯西-黎曼方程,可以得到对在边界上积分的虚部估计式:
显然该积分的实部也满足类似的估计式。因此:
依定义,在内解析,因此可将上式中的积分围道由的边界扩大为的边界:
记是任意一串收敛到的正方形序列。若,当充分大时,所有的边长都小于,因此:
由勒贝格密度定理,第二式右侧的极限作为的函数几乎处处为1,因此左侧的下极限几乎处处为零。
若,当充分大时,在所有内解析,因此:
将围道积分视为集合函数,上述极限以及围道积分的连续性和可加性保证了围道积分几乎处处可导,且围道积分的值由导函数在集合上的积分给出。又因上述下极限在上几乎处处为零,该导数在上也几乎处处为零。这意味着在内的围道积分恒为零,即在乃至的子集内解析。矛盾。[1][4][5][6]
参考文献